Qing Qu, Lei Deng, Anna Gunina, Xuying Hai, Jun Deng, Zhouping Shangguan, Yakov Kuzyakov
{"title":"Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate","authors":"Qing Qu, Lei Deng, Anna Gunina, Xuying Hai, Jun Deng, Zhouping Shangguan, Yakov Kuzyakov","doi":"10.1007/s00374-024-01807-y","DOIUrl":null,"url":null,"abstract":"<p>Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ <sup>13</sup>C-CO<sub>2</sub> labelling experiments in the field and traced <sup>13</sup>C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. <sup>13</sup>C allocation in these pools also increased, whereas <sup>13</sup>C was lost via respiration as CO<sub>2</sub> from soils decreased. <sup>13</sup>C incorporation into the soil and microbial biomass increased with <sup>13</sup>C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01807-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ 13C-CO2 labelling experiments in the field and traced 13C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. 13C allocation in these pools also increased, whereas 13C was lost via respiration as CO2 from soils decreased. 13C incorporation into the soil and microbial biomass increased with 13C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.