Novel chemically reduced cobalt-doped g-C3N4 (CoCN-x) as a highly heterogeneous catalyst for the super-degradation of organic dyes via peroxymonosulfate activation
Aboubakr Ben Hamou, Mohamed Enneiymy, Salaheddine Farsad, Asma Amjlef, Ayoub Chaoui, Nisrine Nouj, Ali Majdoub, Amane Jada, Mohamed Ez-zahery and Noureddine El Alem
{"title":"Novel chemically reduced cobalt-doped g-C3N4 (CoCN-x) as a highly heterogeneous catalyst for the super-degradation of organic dyes via peroxymonosulfate activation","authors":"Aboubakr Ben Hamou, Mohamed Enneiymy, Salaheddine Farsad, Asma Amjlef, Ayoub Chaoui, Nisrine Nouj, Ali Majdoub, Amane Jada, Mohamed Ez-zahery and Noureddine El Alem","doi":"10.1039/D3MA00818E","DOIUrl":null,"url":null,"abstract":"<p >This work presents a novel approach for the design and the stabilization of cobalt oxide nanoparticles supported on g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> (CoCN-<em>x</em>) catalyst to efficiently degrade various organic pollutants through peroxymonosulfate (PMS) activation. The catalyst support synthesis process involved a two-step thermal treatment of urea, resulting in high-purity g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> material, confirmed by XPS, <small><sup>13</sup></small>C NMR, and TGA analyses. Two cobalt oxide NP-based catalysts, CoO and α-Co(OH)<small><sub>2</sub></small>, were then prepared by depositing the cobalt nanoparticles on the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> support using gas-phase reduction by H<small><sub>2</sub></small> (CoCN–H<small><sub>2</sub></small>) and liquid-phase reduction by NaBH<small><sub>4</sub></small> (CoCN–NaBH<small><sub>4</sub></small>), respectively. The prepared CoCN-<em>x</em> materials were characterized using several techniques, such as FTIR spectroscopy, XRD, TEM, and SEM-EDS, which evidenced that the cobalt oxides were successfully introduced into g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. The effectiveness of the prepared catalysts in degrading organic contaminants was evaluated by activating PMS to generate reactive oxygen species (ROSs), <small><sup>1</sup></small>O<small><sub>2</sub></small>, SO<small><sub>4</sub></small>˙<small><sup>−</sup></small>, O<small><sub>2</sub></small>˙<small><sup>−</sup></small>, and HO˙, as confirmed through quenching experiments and electron paramagnetic resonance (EPR) analysis. These ROSs were responsible for the oxidation of the target contaminants, thereby promoting their mineralization. The results showed that both catalysts, CoCN–NaBH<small><sub>4</sub></small> and CoCN–H<small><sub>2</sub></small>, exhibited high catalytic activity throughout a wide pH spectrum, achieving hence complete degradation yields for various organic dyes, including OG, MO, BM, and RhB.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 5","pages":" 1960-1976"},"PeriodicalIF":5.2000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d3ma00818e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d3ma00818e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a novel approach for the design and the stabilization of cobalt oxide nanoparticles supported on g-C3N4 (CoCN-x) catalyst to efficiently degrade various organic pollutants through peroxymonosulfate (PMS) activation. The catalyst support synthesis process involved a two-step thermal treatment of urea, resulting in high-purity g-C3N4 material, confirmed by XPS, 13C NMR, and TGA analyses. Two cobalt oxide NP-based catalysts, CoO and α-Co(OH)2, were then prepared by depositing the cobalt nanoparticles on the g-C3N4 support using gas-phase reduction by H2 (CoCN–H2) and liquid-phase reduction by NaBH4 (CoCN–NaBH4), respectively. The prepared CoCN-x materials were characterized using several techniques, such as FTIR spectroscopy, XRD, TEM, and SEM-EDS, which evidenced that the cobalt oxides were successfully introduced into g-C3N4. The effectiveness of the prepared catalysts in degrading organic contaminants was evaluated by activating PMS to generate reactive oxygen species (ROSs), 1O2, SO4˙−, O2˙−, and HO˙, as confirmed through quenching experiments and electron paramagnetic resonance (EPR) analysis. These ROSs were responsible for the oxidation of the target contaminants, thereby promoting their mineralization. The results showed that both catalysts, CoCN–NaBH4 and CoCN–H2, exhibited high catalytic activity throughout a wide pH spectrum, achieving hence complete degradation yields for various organic dyes, including OG, MO, BM, and RhB.