A Scalable Dynamic TOT Circuit for a 100 ps TOF-PET Detector Design to Improve Energy Linearity and Dynamic Range

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Shirin Pourashraf;Joshua W. Cates;Craig S. Levin
{"title":"A Scalable Dynamic TOT Circuit for a 100 ps TOF-PET Detector Design to Improve Energy Linearity and Dynamic Range","authors":"Shirin Pourashraf;Joshua W. Cates;Craig S. Levin","doi":"10.1109/TRPMS.2023.3344399","DOIUrl":null,"url":null,"abstract":"This article focuses on adapting linearization strategies for annihilation photon energy measurement for a time-of-flight (TOF) positron emission tomography (PET) system that achieves \n<inline-formula> <tex-math>$\\sim 100$ </tex-math></inline-formula>\n picosecond (ps) full-width at half maximum (FWHM) coincidence time resolution (CTR). We have adapted the method of dynamic TOT (DynTOT) for our scalable TOF-PET detector readout electronics to linearize the energy spectra while maintaining \n<inline-formula> <tex-math>$\\sim 100$ </tex-math></inline-formula>\n ps FWHM CTR. The linear response of the resulting DynTOT circuit facilitates improved energy performance compared with conventional time-over-threshold (TOT). Our detector design has the capability to position the 3-D coordinates of one or more 511-keV photon interactions. To facilitate this goal, DynTOT’s linearity across the entire energy range enables accurate measurement of low-energy interactions that is required for more accurate positioning of intercrystal scatter events. This DynTOT block is implemented by off-the-shelf discrete components and consumes only 11 mW power per detector layer unit design comprising 24:1 multiplexed energy and timing channels. We first validated the performance of DynTOT using single \n<inline-formula> <tex-math>$3\\times 3\\times10$ </tex-math></inline-formula>\n mm3 LGSO scintillation crystals side-coupled to arrays of three \n<inline-formula> <tex-math>$3\\times3$ </tex-math></inline-formula>\n mm2 SiPMs which achieved 511-keV photopeak energy resolutions of 13.6 ± 0.4%, 13.0 ± 0.8%, and 17.1 ± 0.6% for conventional pulse height, DynTOT, and conventional TOT methods, respectively. Then, we stretched by roughly 7-fold the DynTOT digital pulses (energy) generated from side-coupling \n<inline-formula> <tex-math>$2\\times4$ </tex-math></inline-formula>\n array of \n<inline-formula> <tex-math>$3\\times 3\\times10$ </tex-math></inline-formula>\n mm3 crystals to 24 SiPMs, and achieved 511-keV photopeak energy resolutions of 11.8 ± 0.7% with a dynamic range from less than 60 to 1274 keV, making that suitable for methods of accurate 3-D positioning of intercrystal-scatter interactions. Moreover, CTR with a highly multiplexed timing circuit was measured using these extended DynTOT pulses for energy gating, resulting in an average 108 ± 1.3 ps FWHM CTR.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10365584/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on adapting linearization strategies for annihilation photon energy measurement for a time-of-flight (TOF) positron emission tomography (PET) system that achieves $\sim 100$ picosecond (ps) full-width at half maximum (FWHM) coincidence time resolution (CTR). We have adapted the method of dynamic TOT (DynTOT) for our scalable TOF-PET detector readout electronics to linearize the energy spectra while maintaining $\sim 100$ ps FWHM CTR. The linear response of the resulting DynTOT circuit facilitates improved energy performance compared with conventional time-over-threshold (TOT). Our detector design has the capability to position the 3-D coordinates of one or more 511-keV photon interactions. To facilitate this goal, DynTOT’s linearity across the entire energy range enables accurate measurement of low-energy interactions that is required for more accurate positioning of intercrystal scatter events. This DynTOT block is implemented by off-the-shelf discrete components and consumes only 11 mW power per detector layer unit design comprising 24:1 multiplexed energy and timing channels. We first validated the performance of DynTOT using single $3\times 3\times10$ mm3 LGSO scintillation crystals side-coupled to arrays of three $3\times3$ mm2 SiPMs which achieved 511-keV photopeak energy resolutions of 13.6 ± 0.4%, 13.0 ± 0.8%, and 17.1 ± 0.6% for conventional pulse height, DynTOT, and conventional TOT methods, respectively. Then, we stretched by roughly 7-fold the DynTOT digital pulses (energy) generated from side-coupling $2\times4$ array of $3\times 3\times10$ mm3 crystals to 24 SiPMs, and achieved 511-keV photopeak energy resolutions of 11.8 ± 0.7% with a dynamic range from less than 60 to 1274 keV, making that suitable for methods of accurate 3-D positioning of intercrystal-scatter interactions. Moreover, CTR with a highly multiplexed timing circuit was measured using these extended DynTOT pulses for energy gating, resulting in an average 108 ± 1.3 ps FWHM CTR.
用于 100 ps TOF-PET 探测器设计的可扩展动态 TOT 电路,可提高能量线性度和动态范围
本文的重点是为飞行时间(TOF)正电子发射断层扫描(PET)系统的湮灭光子能量测量调整线性化策略,该系统可实现 100 皮秒(ps)半最大全宽(FWHM)重合时间分辨率(CTR)。我们为可扩展的 TOF-PET 探测器读出电子装置采用了动态 TOT(DynTOT)方法,在保持 100 皮秒全宽半最大值 CTR 的同时使能谱线性化。与传统的过阈值时间(TOT)相比,DynTOT 电路的线性响应有助于提高能量性能。我们的探测器设计能够定位一个或多个 511-keV 光子相互作用的三维坐标。为了实现这一目标,DynTOT 在整个能量范围内的线性度使其能够精确测量低能量相互作用,而这正是更精确定位晶体间散射事件所需要的。DynTOT 块由现成的分立元件实现,每个探测器层单元设计的功耗仅为 11 mW,包括 24:1 的多路复用能量和定时通道。我们首先验证了 DynTOT 的性能,将单个 3 美元乘 3 美元乘 10 美元 mm3 LGSO 闪烁晶体侧耦合到三个 3 美元乘 3 美元 mm2 SiPM 阵列上,传统脉冲高度、DynTOT 和传统 TOT 方法的 511-keV 光峰能量分辨率分别为 13.6 ± 0.4%、13.0 ± 0.8% 和 17.1 ± 0.6%。然后,我们将侧向耦合 2/times4$ 阵列的 3/times 3/times10$ mm3 晶体产生的 DynTOT 数字脉冲(能量)拉伸了约 7 倍至 24 SiPM,实现了 11.8 ± 0.7% 的 511-keV 光峰能量分辨率,动态范围从小于 60 到 1274 keV,使其适用于晶体间散射相互作用的精确三维定位方法。此外,利用这些用于能量门控的扩展 DynTOT 脉冲,测量了具有高度多路复用定时电路的 CTR,结果是平均 108 ± 1.3 ps FWHM CTR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信