Birational geometry of generalized Hessenberg varieties and the generalized Shareshian-Wachs conjecture

IF 0.9 2区 数学 Q2 MATHEMATICS
Young-Hoon Kiem , Donggun Lee
{"title":"Birational geometry of generalized Hessenberg varieties and the generalized Shareshian-Wachs conjecture","authors":"Young-Hoon Kiem ,&nbsp;Donggun Lee","doi":"10.1016/j.jcta.2024.105884","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce generalized Hessenberg varieties and establish basic facts. We show that the Tymoczko action of the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> on the cohomology of Hessenberg varieties extends to generalized Hessenberg varieties and that natural morphisms among them preserve the action. By analyzing natural morphisms and birational maps among generalized Hessenberg varieties, we give an elementary proof of the Shareshian-Wachs conjecture. Moreover we present a natural generalization of the Shareshian-Wachs conjecture that involves generalized Hessenberg varieties and provide an elementary proof. As a byproduct, we propose a generalized Stanley-Stembridge conjecture for <em>weighted</em> graphs. Our investigation into the birational geometry of generalized Hessenberg varieties enables us to modify them into much simpler varieties like projective spaces or permutohedral varieties by explicit sequences of blowups or projective bundle maps. Using this, we provide two algorithms to compute the <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-representations on the cohomology of generalized Hessenberg varieties. As an application, we compute representations on the low degree cohomology of some Hessenberg varieties.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105884"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000232","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce generalized Hessenberg varieties and establish basic facts. We show that the Tymoczko action of the symmetric group Sn on the cohomology of Hessenberg varieties extends to generalized Hessenberg varieties and that natural morphisms among them preserve the action. By analyzing natural morphisms and birational maps among generalized Hessenberg varieties, we give an elementary proof of the Shareshian-Wachs conjecture. Moreover we present a natural generalization of the Shareshian-Wachs conjecture that involves generalized Hessenberg varieties and provide an elementary proof. As a byproduct, we propose a generalized Stanley-Stembridge conjecture for weighted graphs. Our investigation into the birational geometry of generalized Hessenberg varieties enables us to modify them into much simpler varieties like projective spaces or permutohedral varieties by explicit sequences of blowups or projective bundle maps. Using this, we provide two algorithms to compute the Sn-representations on the cohomology of generalized Hessenberg varieties. As an application, we compute representations on the low degree cohomology of some Hessenberg varieties.

广义海森伯变体的双元几何和广义沙雷西安-瓦克斯猜想
我们引入广义海森堡变项并建立基本事实。我们证明了对称群 Sn 对海森堡变的同调的泰莫茨科作用扩展到广义海森堡变,并且广义海森堡变之间的自然形态保留了这一作用。通过分析广义海森堡变项间的自然形态和双映射,我们给出了沙雷西安-瓦克斯猜想的基本证明。此外,我们还提出了涉及广义海森堡变项的 Shareshian-Wachs 猜想的自然广义化,并给出了基本证明。作为副产品,我们提出了加权图的广义斯坦利-斯坦桥猜想。我们对广义海森堡变项的双向几何的研究,使我们能够通过明确的炸开序列或投影束映射,将它们修改成更简单的变项,如投影空间或包面变项。利用这一点,我们提供了两种算法来计算广义海森伯变项同调上的 Sn 代表。作为应用,我们计算了一些海森堡变项的低度同调上的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信