{"title":"Development of erlotinib-loaded nanotransferosomal gel for the topical treatment of ductal carcinoma <i>in situ</i>.","authors":"Bharti Mangla, Priya Mittal, Pankaj Kumar, Shamama Javed, Waquar Ahsan, Geeta Aggarwal","doi":"10.2217/nnm-2023-0260","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aims:</b> This study was aimed to formulate erlotinib (ERL)-loaded transferosomal gel (ERL@TG) intended for topical application for the treatment of ductal carcinoma <i>in situ</i>. <b>Materials & methods:</b> The optimized process involved a thin-film hydration method to generate ERL-loaded transferosomes (ERL@TFS), which was incorporated into a carbopol gel matrix to generate ERL@TG. The optimized formulation was characterized <i>in vitro</i> followed by cytotoxicity evaluation on MCF-7 breast cancer cell lines and acute toxicity and skin irritation studies was performed <i>in vivo</i>. <b>Results:</b> In a comparative assessment against plain ERL, ERL@TG displayed enhanced efficacy against MCF-7 cell lines, reflected in considerably lower IC<sub>50</sub> values with an enhanced safety profile. <b>Conclusion:</b> Optimized ERL@TG was identified as a promising avenue for addressing ductal carcinoma <i>in situ</i> breast cancer.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/nnm-2023-0260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: This study was aimed to formulate erlotinib (ERL)-loaded transferosomal gel (ERL@TG) intended for topical application for the treatment of ductal carcinoma in situ. Materials & methods: The optimized process involved a thin-film hydration method to generate ERL-loaded transferosomes (ERL@TFS), which was incorporated into a carbopol gel matrix to generate ERL@TG. The optimized formulation was characterized in vitro followed by cytotoxicity evaluation on MCF-7 breast cancer cell lines and acute toxicity and skin irritation studies was performed in vivo. Results: In a comparative assessment against plain ERL, ERL@TG displayed enhanced efficacy against MCF-7 cell lines, reflected in considerably lower IC50 values with an enhanced safety profile. Conclusion: Optimized ERL@TG was identified as a promising avenue for addressing ductal carcinoma in situ breast cancer.