Hardware implementation of memristor-based artificial neural networks.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Fernando Aguirre, Abu Sebastian, Manuel Le Gallo, Wenhao Song, Tong Wang, J Joshua Yang, Wei Lu, Meng-Fan Chang, Daniele Ielmini, Yuchao Yang, Adnan Mehonic, Anthony Kenyon, Marco A Villena, Juan B Roldán, Yuting Wu, Hung-Hsi Hsu, Nagarajan Raghavan, Jordi Suñé, Enrique Miranda, Ahmed Eltawil, Gianluca Setti, Kamilya Smagulova, Khaled N Salama, Olga Krestinskaya, Xiaobing Yan, Kah-Wee Ang, Samarth Jain, Sifan Li, Osamah Alharbi, Sebastian Pazos, Mario Lanza
{"title":"Hardware implementation of memristor-based artificial neural networks.","authors":"Fernando Aguirre, Abu Sebastian, Manuel Le Gallo, Wenhao Song, Tong Wang, J Joshua Yang, Wei Lu, Meng-Fan Chang, Daniele Ielmini, Yuchao Yang, Adnan Mehonic, Anthony Kenyon, Marco A Villena, Juan B Roldán, Yuting Wu, Hung-Hsi Hsu, Nagarajan Raghavan, Jordi Suñé, Enrique Miranda, Ahmed Eltawil, Gianluca Setti, Kamilya Smagulova, Khaled N Salama, Olga Krestinskaya, Xiaobing Yan, Kah-Wee Ang, Samarth Jain, Sifan Li, Osamah Alharbi, Sebastian Pazos, Mario Lanza","doi":"10.1038/s41467-024-45670-9","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL) techniques, which rely on networks of connected simple computing units operating in parallel. The low communication bandwidth between memory and processing units in conventional von Neumann machines does not support the requirements of emerging applications that rely extensively on large sets of data. More recent computing paradigms, such as high parallelization and near-memory computing, help alleviate the data communication bottleneck to some extent, but paradigm- shifting concepts are required. Memristors, a novel beyond-complementary metal-oxide-semiconductor (CMOS) technology, are a promising choice for memory devices due to their unique intrinsic device-level properties, enabling both storing and computing with a small, massively-parallel footprint at low power. Theoretically, this directly translates to a major boost in energy efficiency and computational throughput, but various practical challenges remain. In this work we review the latest efforts for achieving hardware-based memristive artificial neural networks (ANNs), describing with detail the working principia of each block and the different design alternatives with their own advantages and disadvantages, as well as the tools required for accurate estimation of performance metrics. Ultimately, we aim to provide a comprehensive protocol of the materials and methods involved in memristive neural networks to those aiming to start working in this field and the experts looking for a holistic approach.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"1974"},"PeriodicalIF":14.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-45670-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL) techniques, which rely on networks of connected simple computing units operating in parallel. The low communication bandwidth between memory and processing units in conventional von Neumann machines does not support the requirements of emerging applications that rely extensively on large sets of data. More recent computing paradigms, such as high parallelization and near-memory computing, help alleviate the data communication bottleneck to some extent, but paradigm- shifting concepts are required. Memristors, a novel beyond-complementary metal-oxide-semiconductor (CMOS) technology, are a promising choice for memory devices due to their unique intrinsic device-level properties, enabling both storing and computing with a small, massively-parallel footprint at low power. Theoretically, this directly translates to a major boost in energy efficiency and computational throughput, but various practical challenges remain. In this work we review the latest efforts for achieving hardware-based memristive artificial neural networks (ANNs), describing with detail the working principia of each block and the different design alternatives with their own advantages and disadvantages, as well as the tools required for accurate estimation of performance metrics. Ultimately, we aim to provide a comprehensive protocol of the materials and methods involved in memristive neural networks to those aiming to start working in this field and the experts looking for a holistic approach.

Abstract Image

基于忆阻器的人工神经网络的硬件实现。
人工智能(AI)目前正在深度学习(DL)技术的推动下蓬勃发展,而深度学习依赖于并行操作的简单计算单元网络。传统冯-诺依曼机器内存和处理单元之间的通信带宽较低,无法满足广泛依赖大型数据集的新兴应用的要求。最新的计算范式,如高度并行化和近乎内存计算,在一定程度上有助于缓解数据通信瓶颈,但还需要转变范式概念。忆阻器是一种新型的超互补金属氧化物半导体(CMOS)技术,由于其独特的器件级内在特性,忆阻器成为存储器件的理想选择,它能以低功耗、小尺寸、大规模并行的方式实现存储和计算。从理论上讲,这直接意味着能效和计算吞吐量的大幅提升,但各种实际挑战依然存在。在这项工作中,我们回顾了为实现基于硬件的忆阻式人工神经网络(ANN)所做的最新努力,详细描述了每个模块的工作原理、具有各自优缺点的不同设计方案,以及准确估算性能指标所需的工具。最终,我们的目标是为有意开始这一领域工作的人员和寻求整体方法的专家提供一份关于记忆神经网络所涉及的材料和方法的综合协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信