Estimating Body Weight From Measurements From Different Single-Slice Computed Tomography Levels: An Evaluation of Total Cross-Sectional Body Area Measurements and Deep Learning.
IF 1 4区 医学Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Estimating Body Weight From Measurements From Different Single-Slice Computed Tomography Levels: An Evaluation of Total Cross-Sectional Body Area Measurements and Deep Learning.","authors":"Shota Ichikawa, Hiroyuki Sugimori","doi":"10.1097/RCT.0000000000001587","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to evaluate the correlation between the estimated body weight obtained from 2 easy-to-perform methods and the actual body weight at different computed tomography (CT) levels and determine the best reference site for estimating body weight.</p><p><strong>Methods: </strong>A total of 862 patients from a public database of whole-body positron emission tomography/CT studies were retrospectively analyzed. Two methods for estimating body weight at 10 single-slice CT levels were evaluated: a linear regression model using total cross-sectional body area and a deep learning-based model. The accuracy of body weight estimation was evaluated using the mean absolute error (MAE), root mean square error (RMSE), and Spearman rank correlation coefficient ( ρ ).</p><p><strong>Results: </strong>In the linear regression models, the estimated body weight at the T5 level correlated best with the actual body weight (MAE, 5.39 kg; RMSE, 7.01 kg; ρ = 0.912). The deep learning-based models showed the best accuracy at the L5 level (MAE, 6.72 kg; RMSE, 8.82 kg; ρ = 0.865).</p><p><strong>Conclusions: </strong>Although both methods were feasible for estimating body weight at different single-slice CT levels, the linear regression model using total cross-sectional body area at the T5 level as an input variable was the most favorable method for single-slice CT analysis for estimating body weight.</p>","PeriodicalId":15402,"journal":{"name":"Journal of Computer Assisted Tomography","volume":" ","pages":"424-431"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RCT.0000000000001587","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to evaluate the correlation between the estimated body weight obtained from 2 easy-to-perform methods and the actual body weight at different computed tomography (CT) levels and determine the best reference site for estimating body weight.
Methods: A total of 862 patients from a public database of whole-body positron emission tomography/CT studies were retrospectively analyzed. Two methods for estimating body weight at 10 single-slice CT levels were evaluated: a linear regression model using total cross-sectional body area and a deep learning-based model. The accuracy of body weight estimation was evaluated using the mean absolute error (MAE), root mean square error (RMSE), and Spearman rank correlation coefficient ( ρ ).
Results: In the linear regression models, the estimated body weight at the T5 level correlated best with the actual body weight (MAE, 5.39 kg; RMSE, 7.01 kg; ρ = 0.912). The deep learning-based models showed the best accuracy at the L5 level (MAE, 6.72 kg; RMSE, 8.82 kg; ρ = 0.865).
Conclusions: Although both methods were feasible for estimating body weight at different single-slice CT levels, the linear regression model using total cross-sectional body area at the T5 level as an input variable was the most favorable method for single-slice CT analysis for estimating body weight.
期刊介绍:
The mission of Journal of Computer Assisted Tomography is to showcase the latest clinical and research developments in CT, MR, and closely related diagnostic techniques. We encourage submission of both original research and review articles that have immediate or promissory clinical applications. Topics of special interest include: 1) functional MR and CT of the brain and body; 2) advanced/innovative MRI techniques (diffusion, perfusion, rapid scanning); and 3) advanced/innovative CT techniques (perfusion, multi-energy, dose-reduction, and processing).