Real-time prediction of wave-induced hull girder loads for a large container ship based on the recurrent neural network model and error correction strategy
Qiang Wang , Pengyao Yu , Mingdong Lv , Xiangcheng Wu , Chenfeng Li , Xin Chang , Lihong Wu
{"title":"Real-time prediction of wave-induced hull girder loads for a large container ship based on the recurrent neural network model and error correction strategy","authors":"Qiang Wang , Pengyao Yu , Mingdong Lv , Xiangcheng Wu , Chenfeng Li , Xin Chang , Lihong Wu","doi":"10.1016/j.ijnaoe.2024.100587","DOIUrl":null,"url":null,"abstract":"<div><p>Real-time acquisition of wave-induced hull girder loads of a sailing ship will help the captain make reasonable decisions, which is of great significance for improving the safety of the ship's navigation. This paper investigates the real-time prediction method of hull girder loads based on the Recurrent Neural Network (RNN) model and error correction strategy. Firstly, taking the vertical bending moment, horizontal bending moment, and torsional moment at the mid-ship position of a large container ship as examples, corresponding neural network prediction models are established through parameter influence analysis. Secondly, various sea state conditions are used to verify the feasibility of established network prediction models to predict the hull girder loads in real-time. The VBM prediction model performs better than the TM prediction model and HBM prediction model, and the errors of the TM prediction model and HBM prediction model are slightly larger in some cases. Lastly, an improved prediction model based on an error correction strategy is proposed to improve the prediction accuracy of the neural network prediction model, and the adequate performance of the error correction strategy is discussed.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100587"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000062/pdfft?md5=7d292377ac8272e8a9d83b56aa7773cd&pid=1-s2.0-S2092678224000062-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000062","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time acquisition of wave-induced hull girder loads of a sailing ship will help the captain make reasonable decisions, which is of great significance for improving the safety of the ship's navigation. This paper investigates the real-time prediction method of hull girder loads based on the Recurrent Neural Network (RNN) model and error correction strategy. Firstly, taking the vertical bending moment, horizontal bending moment, and torsional moment at the mid-ship position of a large container ship as examples, corresponding neural network prediction models are established through parameter influence analysis. Secondly, various sea state conditions are used to verify the feasibility of established network prediction models to predict the hull girder loads in real-time. The VBM prediction model performs better than the TM prediction model and HBM prediction model, and the errors of the TM prediction model and HBM prediction model are slightly larger in some cases. Lastly, an improved prediction model based on an error correction strategy is proposed to improve the prediction accuracy of the neural network prediction model, and the adequate performance of the error correction strategy is discussed.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.