{"title":"Protein Design Using Structure-Prediction Networks: AlphaFold and RoseTTAFold as Protein Structure Foundation Models","authors":"Jue Wang, Joseph L. Watson, Sidney L. Lisanza","doi":"10.1101/cshperspect.a041472","DOIUrl":null,"url":null,"abstract":"Designing proteins with tailored structures and functions is a long-standing goal in bioengineering. Recently, deep learning advances have enabled protein structure prediction at near-experimental accuracy, which has catalyzed progress in protein design as well. We review recent studies that use structure-prediction neural networks to design proteins, via approaches such as activation maximization, inpainting, or denoising diffusion. These methods have led to major improvements over previous methods in wet-lab success rates for designing protein binders, metalloproteins, enzymes, and oligomeric assemblies. These results show that structure-prediction models are a powerful foundation for developing protein-design tools and suggest that continued improvement of their accuracy and generality will be key to unlocking the full potential of protein design.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041472","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing proteins with tailored structures and functions is a long-standing goal in bioengineering. Recently, deep learning advances have enabled protein structure prediction at near-experimental accuracy, which has catalyzed progress in protein design as well. We review recent studies that use structure-prediction neural networks to design proteins, via approaches such as activation maximization, inpainting, or denoising diffusion. These methods have led to major improvements over previous methods in wet-lab success rates for designing protein binders, metalloproteins, enzymes, and oligomeric assemblies. These results show that structure-prediction models are a powerful foundation for developing protein-design tools and suggest that continued improvement of their accuracy and generality will be key to unlocking the full potential of protein design.
期刊介绍:
Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.