Nanoparticles integrated with mild photothermal therapy and oxaliplatin for tumor chemotherapy and immunotherapy.

Nanomedicine (London, England) Pub Date : 2024-04-01 Epub Date: 2024-03-04 DOI:10.2217/nnm-2023-0335
Qiong Yi, Shumin He, Kai Liao, Zongxiang Yue, Ling Mei
{"title":"Nanoparticles integrated with mild photothermal therapy and oxaliplatin for tumor chemotherapy and immunotherapy.","authors":"Qiong Yi, Shumin He, Kai Liao, Zongxiang Yue, Ling Mei","doi":"10.2217/nnm-2023-0335","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aims:</b> Preparation and evaluation of nanoparticles for tumor chemotherapy and immunotherapy mild photothermal therapy and oxaliplatin. <b>Methods:</b> The double emulsion method was used for nanoparticle preparations. Polydopamine was deposited on the surface, which was further modified with folic acid. Cytotoxicity assays were carried out by cell counting kit-8. <i>In vivo</i> antitumor assays were carried out on 4T1 tumor-bearing mice. <b>Results:</b> The nanoparticles exhibited a 190 nm-diameter pomegranate-like sphere, which could increase temperature to 43-46°C. <i>In vivo</i> distribution showed enhanced accumulation. The nanoparticles generated stronger immunogenic cell death effects. By stimulating the maturation of dendritic cells, mild photothermal therapy combined with oxaliplatin significantly increased the antitumor effect by a direct killing effect and activation of immunotherapy. <b>Conclusion:</b> This study provided a promising strategy of combination therapy for tumors.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/nnm-2023-0335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Preparation and evaluation of nanoparticles for tumor chemotherapy and immunotherapy mild photothermal therapy and oxaliplatin. Methods: The double emulsion method was used for nanoparticle preparations. Polydopamine was deposited on the surface, which was further modified with folic acid. Cytotoxicity assays were carried out by cell counting kit-8. In vivo antitumor assays were carried out on 4T1 tumor-bearing mice. Results: The nanoparticles exhibited a 190 nm-diameter pomegranate-like sphere, which could increase temperature to 43-46°C. In vivo distribution showed enhanced accumulation. The nanoparticles generated stronger immunogenic cell death effects. By stimulating the maturation of dendritic cells, mild photothermal therapy combined with oxaliplatin significantly increased the antitumor effect by a direct killing effect and activation of immunotherapy. Conclusion: This study provided a promising strategy of combination therapy for tumors.

集成温和光热疗法和奥沙利铂的纳米颗粒用于肿瘤化疗和免疫疗法。
目的:制备和评估用于肿瘤化疗和免疫治疗的温和光热疗法和奥沙利铂纳米颗粒。方法:采用双乳液法制备纳米颗粒:采用双乳液法制备纳米粒子。在表面沉积聚多巴胺,并用叶酸对其进行进一步修饰。细胞毒性检测采用细胞计数试剂盒-8。在 4T1 肿瘤小鼠身上进行了体内抗肿瘤试验。结果显示纳米颗粒呈直径为 190 nm 的石榴状球体,可升温至 43-46°C。体内分布显示出更强的蓄积性。纳米颗粒产生了更强的免疫细胞死亡效应。通过刺激树突状细胞的成熟,温和光热疗法与奥沙利铂联合使用,可通过直接杀伤效应和激活免疫疗法显著提高抗肿瘤效果。结论这项研究为肿瘤的联合治疗提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信