Effects of caudal fin stiffness on optimized forward swimming and turning maneuver in a robotic swimmer.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Hankun Deng, Donghao Li, Kundan Panta, Andrew Wertz, Shashank Priya, Bo Cheng
{"title":"Effects of caudal fin stiffness on optimized forward swimming and turning maneuver in a robotic swimmer.","authors":"Hankun Deng, Donghao Li, Kundan Panta, Andrew Wertz, Shashank Priya, Bo Cheng","doi":"10.1088/1748-3190/ad2f42","DOIUrl":null,"url":null,"abstract":"<p><p>In animal and robot swimmers of body and caudal fin (BCF) form, hydrodynamic thrust is mainly produced by their caudal fins, the stiffness of which has profound effects on both thrust and efficiency of swimming. Caudal fin stiffness also affects the motor control and resulting swimming gaits that correspond to optimal swimming performance; however, their relationship remains scarcely explored. Here using magnetic, modular, undulatory robots (<i>μ</i>Bots), we tested the effects of caudal fin stiffness on both forward swimming and turning maneuver. We developed six caudal fins with stiffness of more than three orders of difference. For a<i>μ</i>Bot equipped with each caudal fin (and<i>μ</i>Bot absent of caudal fin), we applied reinforcement learning in experiments to optimize the motor control for maximizing forward swimming speed or final heading change. The motor control of<i>μ</i>Bot was generated by a central pattern generator for forward swimming or by a series of parameterized square waves for turning maneuver. In forward swimming, the variations in caudal fin stiffness gave rise to three modes of optimized motor frequencies and swimming gaits including no caudal fin (4.6 Hz), stiffness <10<sup>-4</sup>Pa m<sup>4</sup>(∼10.6 Hz) and stiffness >10<sup>-4</sup>Pa m<sup>4</sup>(∼8.4 Hz). Swimming speed, however, varied independently with the modes of swimming gaits, and reached maximal at stiffness of 0.23 × 10<sup>-4</sup>Pa m<sup>4</sup>, with the<i>μ</i>Bot without caudal fin achieving the lowest speed. In turning maneuver, caudal fin stiffness had considerable effects on the amplitudes of both initial head steering and subsequent recoil, as well as the final heading change. It had relatively minor effect on the turning motor program except for the<i>μ</i>Bots without caudal fin. Optimized forward swimming and turning maneuver shared an identical caudal fin stiffness and similar patterns of peduncle and caudal fin motion, suggesting simplicity in the form and function relationship in<i>μ</i>Bot swimming.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad2f42","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In animal and robot swimmers of body and caudal fin (BCF) form, hydrodynamic thrust is mainly produced by their caudal fins, the stiffness of which has profound effects on both thrust and efficiency of swimming. Caudal fin stiffness also affects the motor control and resulting swimming gaits that correspond to optimal swimming performance; however, their relationship remains scarcely explored. Here using magnetic, modular, undulatory robots (μBots), we tested the effects of caudal fin stiffness on both forward swimming and turning maneuver. We developed six caudal fins with stiffness of more than three orders of difference. For aμBot equipped with each caudal fin (andμBot absent of caudal fin), we applied reinforcement learning in experiments to optimize the motor control for maximizing forward swimming speed or final heading change. The motor control ofμBot was generated by a central pattern generator for forward swimming or by a series of parameterized square waves for turning maneuver. In forward swimming, the variations in caudal fin stiffness gave rise to three modes of optimized motor frequencies and swimming gaits including no caudal fin (4.6 Hz), stiffness <10-4Pa m4(∼10.6 Hz) and stiffness >10-4Pa m4(∼8.4 Hz). Swimming speed, however, varied independently with the modes of swimming gaits, and reached maximal at stiffness of 0.23 × 10-4Pa m4, with theμBot without caudal fin achieving the lowest speed. In turning maneuver, caudal fin stiffness had considerable effects on the amplitudes of both initial head steering and subsequent recoil, as well as the final heading change. It had relatively minor effect on the turning motor program except for theμBots without caudal fin. Optimized forward swimming and turning maneuver shared an identical caudal fin stiffness and similar patterns of peduncle and caudal fin motion, suggesting simplicity in the form and function relationship inμBot swimming.

尾鳍硬度对机器人游泳者优化前游和转弯动作的影响。
在身体和尾鳍(BCF)形式的动物和机器人游泳者中,流体动力推力主要由尾鳍产生,尾鳍的硬度对推力和游泳效率都有深远影响。尾鳍的硬度也会影响运动控制和由此产生的与最佳游泳性能相对应的游泳步态;然而,对它们之间关系的探索仍然很少。在这里,我们使用磁性模块化波状机器人(μBots)测试了尾鳍硬度对前游和转弯动作的影响。我们开发了六种硬度相差超过 3 个数量级的尾鳍。对于装有尾鳍的μ机器人(和没有尾鳍的μ机器人),我们在实验中应用了强化学习(RL)来优化运动控制,以最大限度地提高前游速度或最终航向变化。μBot的运动控制由中央模式发生器(CPG)产生,用于向前游动,或由一系列参数化方波产生,用于转弯动作。在向前游动时,尾鳍刚度的变化产生了三种优化的运动频率和游动步态模式,包括无尾鳍(4.6 Hz)、刚度10-4 Pa-m4(约8.4 Hz)。然而,游泳速度随游泳步态模式的变化而变化,在刚度为 0.23×10-4 Pa-m4 时达到最大值,无尾鳍 μBot 的速度最低。在转弯动作中,尾鳍刚度对初始头部转向和随后的反冲以及最终航向变化的幅度都有相当大的影响。除了没有尾鳍的微型机器人外,尾鳍刚度对转弯电机程序的影响相对较小。优化后的前向游动和转弯动作具有相同的尾鳍刚度以及相似的足柄和尾鳍运动模式,这表明μ机器人游动的形式和功能关系非常简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信