On variable selection in a semiparametric AFT mixture cure model.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2024-04-01 Epub Date: 2024-03-04 DOI:10.1007/s10985-024-09619-w
Motahareh Parsa, Seyed Mahmood Taghavi-Shahri, Ingrid Van Keilegom
{"title":"On variable selection in a semiparametric AFT mixture cure model.","authors":"Motahareh Parsa, Seyed Mahmood Taghavi-Shahri, Ingrid Van Keilegom","doi":"10.1007/s10985-024-09619-w","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical studies, one often encounters time-to-event data that are subject to right censoring and for which a fraction of the patients under study never experience the event of interest. Such data can be modeled using cure models in survival analysis. In the presence of cure fraction, the mixture cure model is popular, since it allows to model probability to be cured (called the incidence) and the survival function of the uncured individuals (called the latency). In this paper, we develop a variable selection procedure for the incidence and latency parts of a mixture cure model, consisting of a logistic model for the incidence and a semiparametric accelerated failure time model for the latency. We use a penalized likelihood approach, based on adaptive LASSO penalties for each part of the model, and we consider two algorithms for optimizing the criterion function. Extensive simulations are carried out to assess the accuracy of the proposed selection procedure. Finally, we employ the proposed method to a real dataset regarding heart failure patients with left ventricular systolic dysfunction.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09619-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical studies, one often encounters time-to-event data that are subject to right censoring and for which a fraction of the patients under study never experience the event of interest. Such data can be modeled using cure models in survival analysis. In the presence of cure fraction, the mixture cure model is popular, since it allows to model probability to be cured (called the incidence) and the survival function of the uncured individuals (called the latency). In this paper, we develop a variable selection procedure for the incidence and latency parts of a mixture cure model, consisting of a logistic model for the incidence and a semiparametric accelerated failure time model for the latency. We use a penalized likelihood approach, based on adaptive LASSO penalties for each part of the model, and we consider two algorithms for optimizing the criterion function. Extensive simulations are carried out to assess the accuracy of the proposed selection procedure. Finally, we employ the proposed method to a real dataset regarding heart failure patients with left ventricular systolic dysfunction.

关于半参数 AFT 混合治愈模型中的变量选择。
在临床研究中,我们经常会遇到时间到事件的数据,这些数据会受到右侧删减的影响,其中一部分接受研究的患者从未经历过感兴趣的事件。这类数据可以使用生存分析中的治愈模型来建模。在存在治愈率的情况下,混合治愈模型很受欢迎,因为它可以对治愈概率(称为发病率)和未治愈个体的生存函数(称为潜伏期)进行建模。在本文中,我们为混合治愈模型的发病率和潜伏期部分开发了一种变量选择程序,其中发病率部分包括一个逻辑模型,潜伏期部分包括一个半参数加速失败时间模型。我们采用了一种基于模型各部分自适应 LASSO 惩罚的惩罚似然法,并考虑了两种优化准则函数的算法。我们进行了大量模拟,以评估所提出的选择程序的准确性。最后,我们将提出的方法应用于一个真实数据集,该数据集涉及左心室收缩功能障碍的心力衰竭患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信