Kalliopi-Maria Stathopoulou, Spiros Georgakopoulos, Sotiris Tasoulis, Vassilis P Plagianakos
{"title":"Investigating the overlap of machine learning algorithms in the final results of RNA-seq analysis on gene expression estimation.","authors":"Kalliopi-Maria Stathopoulou, Spiros Georgakopoulos, Sotiris Tasoulis, Vassilis P Plagianakos","doi":"10.1007/s13755-023-00265-4","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in computer science in combination with the next-generation sequencing have introduced a new era in biology, enabling advanced state-of-the-art analysis of complex biological data. Bioinformatics is evolving as a union field between computer Science and biology, enabling the representation, storage, management, analysis and exploration of many types of data with a plethora of machine learning algorithms and computing tools. In this study, we used machine learning algorithms to detect differentially expressed genes between different types of cancer and showing the existence overlap to final results from RNA-sequencing analysis. The datasets were obtained from the National Center for Biotechnology Information resource. Specifically, dataset GSE68086 which corresponds to PMID:200,068,086. This dataset consists of 171 blood platelet samples collected from patients with six different tumors and healthy individuals. All steps for RNA-sequencing analysis (preprocessing, read alignment, transcriptome reconstruction, expression quantification and differential expression analysis) were followed. Machine Learning- based Random Forest and Gradient Boosting algorithms were applied to predict significant genes. The Rstudio statistical tool was used for the analysis.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"14"},"PeriodicalIF":4.7000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00265-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in computer science in combination with the next-generation sequencing have introduced a new era in biology, enabling advanced state-of-the-art analysis of complex biological data. Bioinformatics is evolving as a union field between computer Science and biology, enabling the representation, storage, management, analysis and exploration of many types of data with a plethora of machine learning algorithms and computing tools. In this study, we used machine learning algorithms to detect differentially expressed genes between different types of cancer and showing the existence overlap to final results from RNA-sequencing analysis. The datasets were obtained from the National Center for Biotechnology Information resource. Specifically, dataset GSE68086 which corresponds to PMID:200,068,086. This dataset consists of 171 blood platelet samples collected from patients with six different tumors and healthy individuals. All steps for RNA-sequencing analysis (preprocessing, read alignment, transcriptome reconstruction, expression quantification and differential expression analysis) were followed. Machine Learning- based Random Forest and Gradient Boosting algorithms were applied to predict significant genes. The Rstudio statistical tool was used for the analysis.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.