Wenmao Huang, Jingzhun Liu, Shimin Le, Mingxi Yao, Yi Shi, Jie Yan
{"title":"<i>In situ</i> single-molecule investigations of the impacts of biochemical perturbations on conformational intermediates of monomeric α-synuclein.","authors":"Wenmao Huang, Jingzhun Liu, Shimin Le, Mingxi Yao, Yi Shi, Jie Yan","doi":"10.1063/5.0188714","DOIUrl":null,"url":null,"abstract":"<p><p>α-Synuclein aggregation is a common trait in synucleinopathies, including Parkinson's disease. Being an unstructured protein, α-synuclein exists in several distinct conformational intermediates, contributing to both its function and pathogenesis. However, the regulation of these monomer conformations by biochemical factors and potential drugs has remained elusive. In this study, we devised an <i>in situ</i> single-molecule manipulation approach to pinpoint kinetically stable conformational intermediates of monomeric α-synuclein and explore the effects of various biochemical factors and drugs. We uncovered a partially folded conformation located in the non-amyloid-β component (NAC) region of monomeric α-synuclein, which is regulated by a preNAC region. This conformational intermediate is sensitive to biochemical perturbations and small-molecule drugs that influencing α-synuclein's aggregation tendency. Our findings reveal that this partially folded intermediate may play a role in α-synuclein aggregation, offering fresh perspectives for potential treatments aimed at the initial stage of higher-order α-synuclein aggregation. The single-molecule approach developed here can be broadly applied to the study of disease-related intrinsically disordered proteins.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"8 1","pages":"016114"},"PeriodicalIF":6.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0188714","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
α-Synuclein aggregation is a common trait in synucleinopathies, including Parkinson's disease. Being an unstructured protein, α-synuclein exists in several distinct conformational intermediates, contributing to both its function and pathogenesis. However, the regulation of these monomer conformations by biochemical factors and potential drugs has remained elusive. In this study, we devised an in situ single-molecule manipulation approach to pinpoint kinetically stable conformational intermediates of monomeric α-synuclein and explore the effects of various biochemical factors and drugs. We uncovered a partially folded conformation located in the non-amyloid-β component (NAC) region of monomeric α-synuclein, which is regulated by a preNAC region. This conformational intermediate is sensitive to biochemical perturbations and small-molecule drugs that influencing α-synuclein's aggregation tendency. Our findings reveal that this partially folded intermediate may play a role in α-synuclein aggregation, offering fresh perspectives for potential treatments aimed at the initial stage of higher-order α-synuclein aggregation. The single-molecule approach developed here can be broadly applied to the study of disease-related intrinsically disordered proteins.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology