Xiaoguang Liu, Zhen Chen, Yuelong Yan, Fereshteh Zandkarimi, Litong Nie, Qidong Li, Amber Horbath, Kellen Olszewski, Lavanya Kondiparthi, Chao Mao, Hyemin Lee, Li Zhuang, Masha Poyurovsky, Brent R Stockwell, Junjie Chen, Boyi Gan
{"title":"Proteomic analysis of ferroptosis pathways reveals a role of CEPT1 in suppressing ferroptosis.","authors":"Xiaoguang Liu, Zhen Chen, Yuelong Yan, Fereshteh Zandkarimi, Litong Nie, Qidong Li, Amber Horbath, Kellen Olszewski, Lavanya Kondiparthi, Chao Mao, Hyemin Lee, Li Zhuang, Masha Poyurovsky, Brent R Stockwell, Junjie Chen, Boyi Gan","doi":"10.1093/procel/pwae004","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis has been recognized as a unique cell death modality driven by excessive lipid peroxidation and unbalanced cellular metabolism. In this study, we established a protein interaction landscape for ferroptosis pathways through proteomic analyses, and identified choline/ethanolamine phosphotransferase 1 (CEPT1) as a lysophosphatidylcholine acyltransferase 3 (LPCAT3)-interacting protein that regulates LPCAT3 protein stability. In contrast to its known role in promoting phospholipid synthesis, we showed that CEPT1 suppresses ferroptosis potentially by interacting with phospholipases and breaking down certain pro-ferroptotic polyunsaturated fatty acid (PUFA)-containing phospholipids. Together, our study reveals a previously unrecognized role of CEPT1 in suppressing ferroptosis.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"686-703"},"PeriodicalIF":13.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwae004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis has been recognized as a unique cell death modality driven by excessive lipid peroxidation and unbalanced cellular metabolism. In this study, we established a protein interaction landscape for ferroptosis pathways through proteomic analyses, and identified choline/ethanolamine phosphotransferase 1 (CEPT1) as a lysophosphatidylcholine acyltransferase 3 (LPCAT3)-interacting protein that regulates LPCAT3 protein stability. In contrast to its known role in promoting phospholipid synthesis, we showed that CEPT1 suppresses ferroptosis potentially by interacting with phospholipases and breaking down certain pro-ferroptotic polyunsaturated fatty acid (PUFA)-containing phospholipids. Together, our study reveals a previously unrecognized role of CEPT1 in suppressing ferroptosis.
期刊介绍:
Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.