Genome editing and molecular analyses of an Arabidopsis transcription factor, LATE FLOWERING.

IF 1.4 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yoshimi Nakano, Maki Kawai, Moeca Arai, Sumire Fujiwara
{"title":"Genome editing and molecular analyses of an <i>Arabidopsis</i> transcription factor, LATE FLOWERING.","authors":"Yoshimi Nakano, Maki Kawai, Moeca Arai, Sumire Fujiwara","doi":"10.5511/plantbiotechnology.23.0920a","DOIUrl":null,"url":null,"abstract":"<p><p>Correct flower organ formation at the right timing is one of the most important strategies for plants to achieve reproductive success. Ectopic overexpression of LATE FLOWERING (LATE) is known to induce late flowering, partly through suppressing expression of the florigen-encoding gene <i>FLOWERING LOCUS T</i> (<i>FT</i>) in <i>Arabidopsis</i>. LATE is one of the C2H2 zinc finger transcription factors, and it has a canonical transcriptional repression domain called the ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif at the end of its C terminus. Therefore, LATE is considered a transcriptional repressor, but its molecular function remains unclear. Our genome-edited <i>late</i> mutants exhibited no distinct phenotype, even in flowering, indicating the presence of redundancy from other factors. To reveal the molecular function of LATE and factors working with it, we investigated its transcriptional activity and interactions with other proteins. Transactivation activity assay showed that LATE possesses transcriptional repression ability, which appears to be attributable to both the EAR motif and other sequences. Yeast two-hybrid assay showed the EAR motif-mediated interaction of LATE with TOPLESS, a transcriptional corepressor. Moreover, LATE could also interact with CRABS CLAW (CRC), one of the most important regulators of floral meristem determinacy, through sequences in LATE other than the EAR motif. Our findings demonstrated the possibility that LATE can form a transcriptional repression complex with CRC for floral meristem determinacy.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.23.0920a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Correct flower organ formation at the right timing is one of the most important strategies for plants to achieve reproductive success. Ectopic overexpression of LATE FLOWERING (LATE) is known to induce late flowering, partly through suppressing expression of the florigen-encoding gene FLOWERING LOCUS T (FT) in Arabidopsis. LATE is one of the C2H2 zinc finger transcription factors, and it has a canonical transcriptional repression domain called the ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif at the end of its C terminus. Therefore, LATE is considered a transcriptional repressor, but its molecular function remains unclear. Our genome-edited late mutants exhibited no distinct phenotype, even in flowering, indicating the presence of redundancy from other factors. To reveal the molecular function of LATE and factors working with it, we investigated its transcriptional activity and interactions with other proteins. Transactivation activity assay showed that LATE possesses transcriptional repression ability, which appears to be attributable to both the EAR motif and other sequences. Yeast two-hybrid assay showed the EAR motif-mediated interaction of LATE with TOPLESS, a transcriptional corepressor. Moreover, LATE could also interact with CRABS CLAW (CRC), one of the most important regulators of floral meristem determinacy, through sequences in LATE other than the EAR motif. Our findings demonstrated the possibility that LATE can form a transcriptional repression complex with CRC for floral meristem determinacy.

拟南芥转录因子 LATE FLOWERING 的基因组编辑和分子分析。
在正确的时间形成正确的花器官是植物获得繁殖成功的最重要策略之一。在拟南芥中,异位过表达晚开花(LATE)可诱导晚开花,部分原因是它抑制了花原编码基因FLOWERING LOCUS T(FT)的表达。LATE 是 C2H2 锌指转录因子之一,它的 C 端末端有一个典型的转录抑制结构域,称为乙烯反应元件结合因子相关两性抑制(EAR)结构域。因此,LATE 被认为是一种转录抑制因子,但其分子功能仍不清楚。我们的基因组编辑的晚期突变体没有表现出明显的表型,即使在开花期也是如此,这表明存在其他因子的冗余。为了揭示 LATE 及其作用因子的分子功能,我们研究了它的转录活性以及与其他蛋白的相互作用。转录激活活性分析表明,LATE具有转录抑制能力,这似乎可归因于EAR基序和其他序列。酵母双杂交实验表明,LATE与转录核心抑制因子TOPLESS之间存在EAR基序介导的相互作用。此外,LATE 还能通过 EAR 基序以外的序列与花分生组织决定性的最重要调控因子之一 CRABS CLAW(CRC)相互作用。我们的研究结果表明,LATE 有可能与 CRC 形成转录抑制复合物,以实现花分生组织的决定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology
Plant Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-PLANT SCIENCES
CiteScore
2.90
自引率
18.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信