{"title":"Contemporary neurocognitive models of memory: A descriptive comparative analysis","authors":"Alba Marcela Zárate-Rochín","doi":"10.1016/j.neuropsychologia.2024.108846","DOIUrl":null,"url":null,"abstract":"<div><p>The great complexity involved in the study of memory has given rise to numerous hypotheses and models associated with various phenomena at different levels of analysis. This has allowed us to delve deeper in our knowledge about memory but has also made it difficult to synthesize and integrate data from different lines of research. In this context, this work presents a descriptive comparative analysis of contemporary models that address the structure and function of multiple memory systems. The main goal is to outline a panoramic view of the key elements that constitute these models in order to visualize both the current state of research and possible future directions. The elements that stand out from different levels of analysis are distributed neural networks, hierarchical organization, predictive coding, homeostasis, and evolutionary perspective.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028393224000617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The great complexity involved in the study of memory has given rise to numerous hypotheses and models associated with various phenomena at different levels of analysis. This has allowed us to delve deeper in our knowledge about memory but has also made it difficult to synthesize and integrate data from different lines of research. In this context, this work presents a descriptive comparative analysis of contemporary models that address the structure and function of multiple memory systems. The main goal is to outline a panoramic view of the key elements that constitute these models in order to visualize both the current state of research and possible future directions. The elements that stand out from different levels of analysis are distributed neural networks, hierarchical organization, predictive coding, homeostasis, and evolutionary perspective.