Adsorption characteristics of S-Metolachlor onto the sawdust biochar derived from Acacia auriculiformis.

IF 1.4 4区 农林科学 Q4 ENVIRONMENTAL SCIENCES
Quach An Binh, Tran Van Khanh, Xuan Thanh Bui, Khanh Nguyen Di, Duy Toan Pham
{"title":"Adsorption characteristics of S-Metolachlor onto the sawdust biochar derived from <i>Acacia auriculiformis</i>.","authors":"Quach An Binh, Tran Van Khanh, Xuan Thanh Bui, Khanh Nguyen Di, Duy Toan Pham","doi":"10.1080/03601234.2024.2322767","DOIUrl":null,"url":null,"abstract":"<p><p>The adsorption mechanism of S-Metolachlor in an aqueous solution by sawdust biochar derived from <i>Acacia auriculiformis</i> (SAB) was studied. SAB was manufactured at 500 °C for 4 h under oxygen-limited conditions and characterized for SEM, EDS, pHpzc, BET, and FTIR. The adsorption kinetics, isotherm, and diffusion studies of S-Metolachlor and SAB were further explored. Moreover, the effects of the solution pH were examined on the adsorption of S-Metolachlor by SAB. The BET analysis of SAB was achieved at 106.74 m<sup>2</sup>.g<b><sup>-</sup></b><sup>1</sup> and the solution pH did not significantly influence the S-Metolachlor adsorption. The adsorption data were fitted into a Langmuir isotherm and the PSO model. The film diffusion coefficient <b><i>D<sub>f</sub></i></b> (4.93 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> to 8.17 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> m<sup>2</sup>.s<b><sup>-</sup></b><sup>1</sup>) and the particle diffusion coefficient <b><i>D<sub>p</sub></i></b> (1.68 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> to 2.65 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> m<sup>2</sup>.s<b><sup>-</sup></b><sup>1</sup>) were determined and the rate-limiting step of S-Metolachlor adsorption and SAB was governed by liquid film diffusion. The S-Metolachlor adsorption process onto SAB was controlled by multiple mechanisms, including pore filling, H-bonding, hydrophobic interaction, and π-π EDA interactions. H-bonding is the main interaction for the adsorption of S-Metolachlor and SAB. Conclusively, the study illustrates that biochar produced from <i>Acacia auriculiformis</i> sawdust possessed effective adsorption properties for S-Metolachlor herbicide.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":" ","pages":"192-201"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2024.2322767","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption mechanism of S-Metolachlor in an aqueous solution by sawdust biochar derived from Acacia auriculiformis (SAB) was studied. SAB was manufactured at 500 °C for 4 h under oxygen-limited conditions and characterized for SEM, EDS, pHpzc, BET, and FTIR. The adsorption kinetics, isotherm, and diffusion studies of S-Metolachlor and SAB were further explored. Moreover, the effects of the solution pH were examined on the adsorption of S-Metolachlor by SAB. The BET analysis of SAB was achieved at 106.74 m2.g-1 and the solution pH did not significantly influence the S-Metolachlor adsorption. The adsorption data were fitted into a Langmuir isotherm and the PSO model. The film diffusion coefficient Df (4.93 × 10-11 to 8.17 × 10-11 m2.s-1) and the particle diffusion coefficient Dp (1.68 × 10-11 to 2.65 × 10-11 m2.s-1) were determined and the rate-limiting step of S-Metolachlor adsorption and SAB was governed by liquid film diffusion. The S-Metolachlor adsorption process onto SAB was controlled by multiple mechanisms, including pore filling, H-bonding, hydrophobic interaction, and π-π EDA interactions. H-bonding is the main interaction for the adsorption of S-Metolachlor and SAB. Conclusively, the study illustrates that biochar produced from Acacia auriculiformis sawdust possessed effective adsorption properties for S-Metolachlor herbicide.

金合欢锯屑生物炭对 S-甲草胺的吸附特性。
研究了从金合欢(Acacia auriculiformis)中提取的锯末生物炭(SAB)对水溶液中 S-甲草胺的吸附机理。SAB 在限氧条件下于 500 °C 下制造 4 小时,并对其进行了 SEM、EDS、pHpzc、BET 和 FTIR 表征。进一步探讨了 S-Metolachlor 和 SAB 的吸附动力学、等温线和扩散研究。此外,还研究了溶液 pH 值对 SAB 吸附 S-Metolachlor 的影响。SAB 的 BET 分析值为 106.74 m2.g-1,而溶液的 pH 值对 S-Metolachlor 的吸附没有显著影响。吸附数据被拟合为 Langmuir 等温线和 PSO 模型。确定了液膜扩散系数 Df(4.93 × 10-11 至 8.17 × 10-11 m2.s-1)和微粒扩散系数 Dp(1.68 × 10-11 至 2.65 × 10-11 m2.s-1),S-甲草胺吸附和 SAB 的限速步骤受液膜扩散控制。Setolachlor 在 SAB 上的吸附过程受多种机制控制,包括孔隙填充、H 键、疏水作用和 π-π EDA 相互作用。H 键是吸附 S-Metolachlor 和 SAB 的主要相互作用。研究结果表明,用金合欢锯屑生产的生物炭具有有效吸附 S-Metolachlor 除草剂的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.00%
发文量
87
审稿时长
1 months
期刊介绍: 12 issues per year Abstracted/indexed in: Agricola; Analytical Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality; BioSciences Information Service of Biological Abstracts (BIOSIS); CAB Abstracts; CAB AGBiotech News and Information; CAB Irrigation & Drainage Abstracts; CAB Soils & Fertilizers Abstracts; Chemical Abstracts Service Plus; CSA Aluminum Industry Abstracts; CSA ANTE: Abstracts in New Technology and Engineering; CSA ASFA 3 Aquatic Pollution and Environmental Quality; CSA ASSIA: Applied Social Sciences Index & Abstracts; CSA Ecology Abstracts; CSA Entomology Abstracts; CSA Environmental Engineering Abstracts; CSA Health & Safety Science Abstracts; CSA Pollution Abstracts; CSA Toxicology Abstracts; CSA Water Resource Abstracts; EBSCOhost Online Research Databases; Elsevier BIOBASE/Current Awareness in Biological Sciences; Elsevier Engineering Information: EMBASE/Excerpta Medica/ Engineering Index/COMPENDEX PLUS; Environment Abstracts; Environmental Knowledge; Food Science and Technology Abstracts; Geo Abstracts; Geobase; Food Science; Index Medicus/ MEDLINE; INIST-Pascal/ CNRS; NIOSHTIC; ISI BIOSIS Previews; Pesticides; Food Contaminants and Agricultural Wastes: Analytical Abstracts; Pollution Abstracts; PubSCIENCE; Reference Update; Research Alert; Science Citation Index Expanded (SCIE); and Water Resources Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信