{"title":"Development and optimization of kaempferol loaded ethosomes using Box–Behnken statistical design: In vitro and ex-vivo assessments","authors":"Shraddha Singh Raghav, Bhavna Kumar, Neeraj Kumar Sethiya, Shilpa Pahwa","doi":"10.1002/jbm.b.35394","DOIUrl":null,"url":null,"abstract":"<p>Kaempferol (KMP) belong to flavonoid class have developed in ethosomal formulation and were evaluated for their potential to treat diabetic foot ulcers. Even though ethosomes are highly deformable, they can pass through human skin intact. KMP ethosomes were formulated using the cold method and optimized by Box–Behnken design (BBD) (three-factor, three-level (3<sup>3</sup>)). The formulation variables used for optimization are drug concentration of KMP, soylecithin content, and ethanol percentage. The optimized formulation was examined using transmission electronic microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, <i>in-vitro</i> release, <i>ex-vivo</i> permeation studies, and storage stability. The optimized KMP ethosomes was found to have vesicle size (VS) of 283 ± 0.3 nm and zeta potential (ZP) of −29.67 ± 0.3 mV, polydispersity index (PDI) of 0.36, % entrapment efficiency (%EE) of 91.02 ± 0.21%, drug loading (%) of 46.23 ± 2.5% followed by good storage stability at 4°C/60 ± 5% RH. <i>In vitro</i> drug release of optimized KMP ethosomes was 88.2 ± 2.75%, which was approximately double when compared with pure KMP release, that is 49.9 ± 1.89%. The release kinetics for optimized KMP ethosomes follows the Korsmeyer–Peppas model. An apparent permeation coefficient of 356.25 ± 0.5 μg/cm<sup>2</sup> was determined and compared with pure KMP (118.46 ± 0.3 μg/cm<sup>2</sup>) for 24 h. According to the study, ethosomes can be a cutting-edge strategy that offers a new delivery method for prolonged and targeted distribution of KMP in a variety of dosage forms including oral, topical, transdermal, and so forth.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35394","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kaempferol (KMP) belong to flavonoid class have developed in ethosomal formulation and were evaluated for their potential to treat diabetic foot ulcers. Even though ethosomes are highly deformable, they can pass through human skin intact. KMP ethosomes were formulated using the cold method and optimized by Box–Behnken design (BBD) (three-factor, three-level (33)). The formulation variables used for optimization are drug concentration of KMP, soylecithin content, and ethanol percentage. The optimized formulation was examined using transmission electronic microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, in-vitro release, ex-vivo permeation studies, and storage stability. The optimized KMP ethosomes was found to have vesicle size (VS) of 283 ± 0.3 nm and zeta potential (ZP) of −29.67 ± 0.3 mV, polydispersity index (PDI) of 0.36, % entrapment efficiency (%EE) of 91.02 ± 0.21%, drug loading (%) of 46.23 ± 2.5% followed by good storage stability at 4°C/60 ± 5% RH. In vitro drug release of optimized KMP ethosomes was 88.2 ± 2.75%, which was approximately double when compared with pure KMP release, that is 49.9 ± 1.89%. The release kinetics for optimized KMP ethosomes follows the Korsmeyer–Peppas model. An apparent permeation coefficient of 356.25 ± 0.5 μg/cm2 was determined and compared with pure KMP (118.46 ± 0.3 μg/cm2) for 24 h. According to the study, ethosomes can be a cutting-edge strategy that offers a new delivery method for prolonged and targeted distribution of KMP in a variety of dosage forms including oral, topical, transdermal, and so forth.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.