Xianglin Tao, Zheng Li, Xinrui Kan, Tingting Qiao, Changjiang Ye, Entao Sun
{"title":"Genetic diversity and differentiation analysis reveals geographical structure characteristics of Dermatophagoides farinae (Acari: Pyroglyphidae).","authors":"Xianglin Tao, Zheng Li, Xinrui Kan, Tingting Qiao, Changjiang Ye, Entao Sun","doi":"10.1007/s10493-023-00889-x","DOIUrl":null,"url":null,"abstract":"<p><p>Dermatophagoides farinae (Acari: Pyroglyphidae) has been reported as one of the major sources of indoor allergens that trigger allergic disease in humans. In this study, the genetic diversity and differentiation of nine geographic populations of D. farinae were investigated by analyzing mitochondrial and nuclear genes (COI, Cytb, COI+Cytb, and ITS). The results showed high genetic diversity across the D. farinae populations. The BX (Benxi) population showed the lowest genetic diversity, possibly due to climatic causes. Significant genetic differentiation was observed among D. farinae populations based on mitochondrial genes. The analysis of molecular variance (AMOVA) results elucidated that the contribution to the rate of variation was primarily from among populations. Phylogenetic analysis and haplotype network based on mitochondrial genes both indicated significant geographic structure among D. farinae populations. The nine geographic populations of D. farinae were divided into two groups with the Qinling Mountains-Huai River Line serving as the boundary for spatial analysis of molecular variance analysis (SAMOVA). However, the Mantel test analysis showed no association between genetic differentiation and geographic distance because of the high level of gene flow among some populations through the transportation of stored food. Overall, these results indicate both significant genetic differentiation among D. farinae populations, but also significant gene exchange between them. Results from the analysis of the nuclear gene ITS differed from the mitochondrial genes due to differences in molecular markers between mitochondrial genes and nuclear genes. These observations improve our understanding of the genetic diversity and structure of D. farinae populations.</p>","PeriodicalId":12088,"journal":{"name":"Experimental and Applied Acarology","volume":" ","pages":"351-367"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Applied Acarology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10493-023-00889-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dermatophagoides farinae (Acari: Pyroglyphidae) has been reported as one of the major sources of indoor allergens that trigger allergic disease in humans. In this study, the genetic diversity and differentiation of nine geographic populations of D. farinae were investigated by analyzing mitochondrial and nuclear genes (COI, Cytb, COI+Cytb, and ITS). The results showed high genetic diversity across the D. farinae populations. The BX (Benxi) population showed the lowest genetic diversity, possibly due to climatic causes. Significant genetic differentiation was observed among D. farinae populations based on mitochondrial genes. The analysis of molecular variance (AMOVA) results elucidated that the contribution to the rate of variation was primarily from among populations. Phylogenetic analysis and haplotype network based on mitochondrial genes both indicated significant geographic structure among D. farinae populations. The nine geographic populations of D. farinae were divided into two groups with the Qinling Mountains-Huai River Line serving as the boundary for spatial analysis of molecular variance analysis (SAMOVA). However, the Mantel test analysis showed no association between genetic differentiation and geographic distance because of the high level of gene flow among some populations through the transportation of stored food. Overall, these results indicate both significant genetic differentiation among D. farinae populations, but also significant gene exchange between them. Results from the analysis of the nuclear gene ITS differed from the mitochondrial genes due to differences in molecular markers between mitochondrial genes and nuclear genes. These observations improve our understanding of the genetic diversity and structure of D. farinae populations.
期刊介绍:
Experimental and Applied Acarology publishes peer-reviewed original papers describing advances in basic and applied research on mites and ticks. Coverage encompasses all Acari, including those of environmental, agricultural, medical and veterinary importance, and all the ways in which they interact with other organisms (plants, arthropods and other animals). The subject matter draws upon a wide variety of disciplines, including evolutionary biology, ecology, epidemiology, physiology, biochemistry, toxicology, immunology, genetics, molecular biology and pest management sciences.