Mathilde Baudat, Sinno H. P. Simons, Elbert A. J. Joosten
{"title":"Repetitive neonatal procedural pain affects stress-induced plasma corticosterone increase in young adult females but not in male rats","authors":"Mathilde Baudat, Sinno H. P. Simons, Elbert A. J. Joosten","doi":"10.1002/dev.22478","DOIUrl":null,"url":null,"abstract":"<p>Exposure to repetitive painful procedures in the neonatal intensive care unit results in long-lasting effects, especially visible after a “second hit” in adulthood. As the nociceptive system and the hypothalamic–pituitary–adrenal (HPA) axis interact and are vulnerable in early life, repetitive painful procedures in neonates may affect later-life HPA axis reactivity. The first aim of the present study was to investigate the effects of repetitive neonatal procedural pain on plasma corticosterone levels after mild acute stress (MAS) in young adult rats. Second, the study examined if MAS acts as a “second hit” and affects mechanical sensitivity. Fifty-two rats were either needle pricked four times a day, disturbed, or left undisturbed during the first neonatal week. At 8 weeks, the animals were subjected to MAS, and plasma was collected before (t0), after MAS (t20), and at recovery (t60). Corticosterone levels were analyzed using an enzyme-linked immunosorbent assay, and mechanical sensitivity was assessed with von Frey filaments. Results demonstrate that repetitive neonatal procedural pain reduces stress-induced plasma corticosterone increase after MAS only in young adult females and not in males. Furthermore, MAS does not affect mechanical sensitivity in young adult rats. Altogether, the results suggest an age- and sex-dependent effect of repetitive neonatal procedural pain on HPA axis reprogramming.</p>","PeriodicalId":11086,"journal":{"name":"Developmental psychobiology","volume":"66 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dev.22478","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental psychobiology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dev.22478","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to repetitive painful procedures in the neonatal intensive care unit results in long-lasting effects, especially visible after a “second hit” in adulthood. As the nociceptive system and the hypothalamic–pituitary–adrenal (HPA) axis interact and are vulnerable in early life, repetitive painful procedures in neonates may affect later-life HPA axis reactivity. The first aim of the present study was to investigate the effects of repetitive neonatal procedural pain on plasma corticosterone levels after mild acute stress (MAS) in young adult rats. Second, the study examined if MAS acts as a “second hit” and affects mechanical sensitivity. Fifty-two rats were either needle pricked four times a day, disturbed, or left undisturbed during the first neonatal week. At 8 weeks, the animals were subjected to MAS, and plasma was collected before (t0), after MAS (t20), and at recovery (t60). Corticosterone levels were analyzed using an enzyme-linked immunosorbent assay, and mechanical sensitivity was assessed with von Frey filaments. Results demonstrate that repetitive neonatal procedural pain reduces stress-induced plasma corticosterone increase after MAS only in young adult females and not in males. Furthermore, MAS does not affect mechanical sensitivity in young adult rats. Altogether, the results suggest an age- and sex-dependent effect of repetitive neonatal procedural pain on HPA axis reprogramming.
期刊介绍:
Developmental Psychobiology is a peer-reviewed journal that publishes original research papers from the disciplines of psychology, biology, neuroscience, and medicine that contribute to an understanding of behavior development. Research that focuses on development in the embryo/fetus, neonate, juvenile, or adult animal and multidisciplinary research that relates behavioral development to anatomy, physiology, biochemistry, genetics, or evolution is appropriate. The journal represents a broad phylogenetic perspective on behavior development by publishing studies of invertebrates, fish, birds, humans, and other animals. The journal publishes experimental and descriptive studies whether carried out in the laboratory or field.
The journal also publishes review articles and theoretical papers that make important conceptual contributions. Special dedicated issues of Developmental Psychobiology , consisting of invited papers on a topic of general interest, may be arranged with the Editor-in-Chief.
Developmental Psychobiology also publishes Letters to the Editor, which discuss issues of general interest or material published in the journal. Letters discussing published material may correct errors, provide clarification, or offer a different point of view. Authors should consult the editors on the preparation of these contributions.