Follistatin-like 1 protects against doxorubicin-induced cardiotoxicity by preventing mitochondrial dysfunction through the SIRT6/Nrf2 signaling pathway
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Haijun Xu, Hong Guo, Zhigang Tang, Ruijun Hao, Shaowei Wang, Ping Jin
{"title":"Follistatin-like 1 protects against doxorubicin-induced cardiotoxicity by preventing mitochondrial dysfunction through the SIRT6/Nrf2 signaling pathway","authors":"Haijun Xu, Hong Guo, Zhigang Tang, Ruijun Hao, Shaowei Wang, Ping Jin","doi":"10.1002/cbin.12147","DOIUrl":null,"url":null,"abstract":"<p>Mitochondrial dysfunction and myocardial remodeling have been reported to be the main underlying molecular mechanisms of doxorubicin-induced cardiotoxicity. SIRT6 is a nicotinamide adenine dinucleotide-dependent enzyme that plays a vital role in cardiac protection against various stresses. Moreover, previous studies have demonstrated that FSTL1 could alleviate doxorubicin-induced cardiotoxicity by inhibiting autophagy. The present study investigated the probable mechanisms of FSTL1 on doxorubicin-induced cardiotoxicity in vivo and in vitro. We confirmed that FSTL1 exerted a pivotal protective role on cardiac tissue in vivo and on doxorubicin-induced cell injury in vitro. Furthermore, FSTL1 can alleviate doxorubicin-induced mitochondrial dysfunction by inhibiting autophagy and apoptosis. Further studies demonstrated that FSTL1 can activate SIRT6 signaling by restoring the SIRT6 protein expression in doxorubicin-induced myocardial injury. SIRT6 activation elevated the protein expression of <i>Nrf2</i> in doxorubicin-induced H9C2 injury. Treatment with the Nrf2 inhibitor ML385 partially antagonized the cardioprotective role of SIRT6 on doxorubicin-induced autophagy or apoptosis. These results suggested that the protective mechanism of FSTL1 on doxorubicin-induced cardiotoxicity may be related with the inhibition of autophagy and apoptosis, partly through the activation of SIRT6/Nrf2.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12147","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial dysfunction and myocardial remodeling have been reported to be the main underlying molecular mechanisms of doxorubicin-induced cardiotoxicity. SIRT6 is a nicotinamide adenine dinucleotide-dependent enzyme that plays a vital role in cardiac protection against various stresses. Moreover, previous studies have demonstrated that FSTL1 could alleviate doxorubicin-induced cardiotoxicity by inhibiting autophagy. The present study investigated the probable mechanisms of FSTL1 on doxorubicin-induced cardiotoxicity in vivo and in vitro. We confirmed that FSTL1 exerted a pivotal protective role on cardiac tissue in vivo and on doxorubicin-induced cell injury in vitro. Furthermore, FSTL1 can alleviate doxorubicin-induced mitochondrial dysfunction by inhibiting autophagy and apoptosis. Further studies demonstrated that FSTL1 can activate SIRT6 signaling by restoring the SIRT6 protein expression in doxorubicin-induced myocardial injury. SIRT6 activation elevated the protein expression of Nrf2 in doxorubicin-induced H9C2 injury. Treatment with the Nrf2 inhibitor ML385 partially antagonized the cardioprotective role of SIRT6 on doxorubicin-induced autophagy or apoptosis. These results suggested that the protective mechanism of FSTL1 on doxorubicin-induced cardiotoxicity may be related with the inhibition of autophagy and apoptosis, partly through the activation of SIRT6/Nrf2.