Lin Chen, Yubing Zhang, Zhonghao Chen, Yitong Dong, Yushan Jiang, Jianmin Hua, Yunfei Liu, Ahmed I. Osman, Mohamed Farghali, Lepeng Huang, David W. Rooney, Pow-Seng Yap
{"title":"Biomaterials technology and policies in the building sector: a review","authors":"Lin Chen, Yubing Zhang, Zhonghao Chen, Yitong Dong, Yushan Jiang, Jianmin Hua, Yunfei Liu, Ahmed I. Osman, Mohamed Farghali, Lepeng Huang, David W. Rooney, Pow-Seng Yap","doi":"10.1007/s10311-023-01689-w","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional building materials have some drawbacks in the construction industry, particularly in terms of greenhouse gas emissions and energy consumption. Biomaterials derived from renewable sources are a promising alternative, significantly reducing the greenhouse effect and enhancing energy efficiency. However, traditional materials still dominate the construction sector, and there is a lack of understanding among some policymakers and developers regarding biomaterials. Here, we review building biomaterials and their policies and life cycle assessment through case studies. Bio-based materials have the potential to reduce over 320,000 tons of carbon dioxide emissions by 2050. They also exhibit advantages like decreasing water absorption by 40%, reducing energy consumption by 8.7%, enhancing acoustic absorption by 6.7%, and improving mechanical properties. We summarize recent advancements in mycelial materials, bioconcrete, natural fibers, and fiber-reinforced composites. We also explore the contributions of nanotechnology and microalgae technology in enhancing biomaterials' thermal insulation and eco-friendliness.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 2","pages":"715 - 750"},"PeriodicalIF":15.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-023-01689-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-023-01689-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional building materials have some drawbacks in the construction industry, particularly in terms of greenhouse gas emissions and energy consumption. Biomaterials derived from renewable sources are a promising alternative, significantly reducing the greenhouse effect and enhancing energy efficiency. However, traditional materials still dominate the construction sector, and there is a lack of understanding among some policymakers and developers regarding biomaterials. Here, we review building biomaterials and their policies and life cycle assessment through case studies. Bio-based materials have the potential to reduce over 320,000 tons of carbon dioxide emissions by 2050. They also exhibit advantages like decreasing water absorption by 40%, reducing energy consumption by 8.7%, enhancing acoustic absorption by 6.7%, and improving mechanical properties. We summarize recent advancements in mycelial materials, bioconcrete, natural fibers, and fiber-reinforced composites. We also explore the contributions of nanotechnology and microalgae technology in enhancing biomaterials' thermal insulation and eco-friendliness.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.