Silencing NlFAR7 destroyed the pore canals and related structures of the brown planthopper

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yi-Lin Cui, Jian-Shen Guo, Chuan-Xi Zhang, Xiao-Ping Yu, Dan-Ting Li
{"title":"Silencing NlFAR7 destroyed the pore canals and related structures of the brown planthopper","authors":"Yi-Lin Cui,&nbsp;Jian-Shen Guo,&nbsp;Chuan-Xi Zhang,&nbsp;Xiao-Ping Yu,&nbsp;Dan-Ting Li","doi":"10.1111/imb.12903","DOIUrl":null,"url":null,"abstract":"<p>Fatty acyl-CoA reductase (FAR) is one of the key enzymes, which catalyses the conversion of fatty acyl-CoA to the corresponding alcohols. Among the FAR family members in the brown planthopper (<i>Nilaparvata lugens</i>), <i>NlFAR7</i> plays a pivotal role in both the synthesis of cuticular hydrocarbons and the waterproofing of the cuticle. However, the precise mechanism by which <i>NlFAR7</i> influences the formation of the cuticle structure in <i>N. lugens</i> remains unclear. Therefore, this paper aims to investigate the impact of <i>NlFAR7</i> through RNA interference, transmission electron microscope, focused ion beam scanning electron microscopy (FIB-SEM) and lipidomics analysis. FIB-SEM is employed to reconstruct the three-dimensional (3D) architecture of the pore canals and related cuticle structures in <i>N. lugens</i> subjected to ds<i>NlFAR7</i> and ds<i>GFP</i> treatments, enabling a comprehensive assessment of changes in the cuticle structures. The results reveal a reduction in the thickness of the cuticle and disruptions in the spiral structure of pore canals, accompanied by widened base and middle diameters. Furthermore, the lipidomics comparison analysis between ds<i>NlFAR7</i>- and ds<i>GFP</i>-treated <i>N. lugens</i> demonstrated that there were 25 metabolites involved in cuticular lipid layer synthesis, including 7 triacylglycerols (TGs), 5 phosphatidylcholines (PCs), 3 phosphatidylethanolamines (PEs) and 2 diacylglycerols (DGs) decreased, and 4 triacylglycerols (TGs) and 4 PEs increased. In conclusion, silencing <i>NlFAR7</i> disrupts the synthesis of overall lipids and destroys the cuticular pore canals and related structures, thereby disrupting the secretion of cuticular lipids, thus affecting the cuticular waterproofing of <i>N. lugens</i>. These findings give significant attention with reference to further biochemical researches on the substrate specificity of FAR protein, and the molecular regulation mechanisms during <i>N. lugens</i> life cycle.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12903","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fatty acyl-CoA reductase (FAR) is one of the key enzymes, which catalyses the conversion of fatty acyl-CoA to the corresponding alcohols. Among the FAR family members in the brown planthopper (Nilaparvata lugens), NlFAR7 plays a pivotal role in both the synthesis of cuticular hydrocarbons and the waterproofing of the cuticle. However, the precise mechanism by which NlFAR7 influences the formation of the cuticle structure in N. lugens remains unclear. Therefore, this paper aims to investigate the impact of NlFAR7 through RNA interference, transmission electron microscope, focused ion beam scanning electron microscopy (FIB-SEM) and lipidomics analysis. FIB-SEM is employed to reconstruct the three-dimensional (3D) architecture of the pore canals and related cuticle structures in N. lugens subjected to dsNlFAR7 and dsGFP treatments, enabling a comprehensive assessment of changes in the cuticle structures. The results reveal a reduction in the thickness of the cuticle and disruptions in the spiral structure of pore canals, accompanied by widened base and middle diameters. Furthermore, the lipidomics comparison analysis between dsNlFAR7- and dsGFP-treated N. lugens demonstrated that there were 25 metabolites involved in cuticular lipid layer synthesis, including 7 triacylglycerols (TGs), 5 phosphatidylcholines (PCs), 3 phosphatidylethanolamines (PEs) and 2 diacylglycerols (DGs) decreased, and 4 triacylglycerols (TGs) and 4 PEs increased. In conclusion, silencing NlFAR7 disrupts the synthesis of overall lipids and destroys the cuticular pore canals and related structures, thereby disrupting the secretion of cuticular lipids, thus affecting the cuticular waterproofing of N. lugens. These findings give significant attention with reference to further biochemical researches on the substrate specificity of FAR protein, and the molecular regulation mechanisms during N. lugens life cycle.

沉默NlFAR7会破坏褐飞虱的孔道和相关结构
脂肪酰-CoA 还原酶(FAR)是催化脂肪酰-CoA 转化为相应醇类的关键酶之一。在褐跳虫(Nilaparvata lugens)的 FAR 家族成员中,NlFAR7 在合成角质层碳氢化合物和角质层防水方面发挥着关键作用。然而,NlFAR7 影响 N. lugens 角质层结构形成的确切机制仍不清楚。因此,本文旨在通过 RNA 干扰、透射电子显微镜、聚焦离子束扫描电子显微镜(FIB-SEM)和脂质组学分析来研究 NlFAR7 的影响。利用FIB-SEM重建了经dsNlFAR7和dsGFP处理的N. lugens孔道和相关角质层结构的三维(3D)结构,从而全面评估了角质层结构的变化。结果显示,角质层厚度减少,孔道的螺旋结构被破坏,同时基部和中部直径变宽。此外,dsNlFAR7 和 dsGFP 处理 N. lugens 的脂质组学对比分析表明,有 25 种代谢物参与了角质层脂质的合成,其中 7 种三酰甘油(TGs)、5 种磷脂酰胆碱(PCs)、3 种磷脂酰乙醇胺(PEs)和 2 种二酰甘油(DGs)减少,4 种三酰甘油(TGs)和 4 种 PEs 增加。总之,沉默 NlFAR7 会破坏整体脂质的合成,破坏角质层孔道及相关结构,从而破坏角质层脂质的分泌,进而影响 N. lugens 的角质层防水性能。这些发现对进一步研究 FAR 蛋白的底物特异性和 N. lugens 生命周期中的分子调控机制具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信