Experimental Research on the Carbon Dioxides Reduction Potential by Substitution Gasoline with Ethanol and Propane Under Reactivity Controlled Compression Ignition in a Single Cylinder Engine

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Jeongwoo Lee, Sanghyun Chu, Jaegu Kang, Kyoungdoug Min
{"title":"Experimental Research on the Carbon Dioxides Reduction Potential by Substitution Gasoline with Ethanol and Propane Under Reactivity Controlled Compression Ignition in a Single Cylinder Engine","authors":"Jeongwoo Lee, Sanghyun Chu, Jaegu Kang, Kyoungdoug Min","doi":"10.1007/s12239-024-00026-6","DOIUrl":null,"url":null,"abstract":"<p>In this experiment, it was experimentally investigated the combustion and exhaust characteristics, as well as the thermal efficiency, of RCCI combustion using gasoline, ethanol, and propane as low-reactivity fuels under four operating conditions. For each operating condition, gISNO<sub><i>x</i></sub> was limited to 0.15 g/kWh, and gISSmoke was limited to below 15 mg/kWh. The experiment was conducted by determining the operating conditions that satisfied these limitations and resulted in the highest city thermal efficiency. The low-reactivity fuels were supplied by port injection, while diesel was directly injected into the combustion chamber using a diesel injector. As a result, when gasoline is replaced with low-carbon fuels like ethanol and propane, the reduction in CO<sub>2</sub> emissions occurred. Under maximum power conditions, using ethanol allowed for a maximum reduction in CO<sub>2</sub> emissions of 6.81%. Depending on the driving conditions, ethanol showed a reduction ranging from 3.60 to 6.81%, while propane exhibited a reduction ranging from 3.10 to 5.64%. Additionally, by substituting with ethanol and propane, the GIE could be improved up to 44.73 and 43.56%, respectively.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"260 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00026-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this experiment, it was experimentally investigated the combustion and exhaust characteristics, as well as the thermal efficiency, of RCCI combustion using gasoline, ethanol, and propane as low-reactivity fuels under four operating conditions. For each operating condition, gISNOx was limited to 0.15 g/kWh, and gISSmoke was limited to below 15 mg/kWh. The experiment was conducted by determining the operating conditions that satisfied these limitations and resulted in the highest city thermal efficiency. The low-reactivity fuels were supplied by port injection, while diesel was directly injected into the combustion chamber using a diesel injector. As a result, when gasoline is replaced with low-carbon fuels like ethanol and propane, the reduction in CO2 emissions occurred. Under maximum power conditions, using ethanol allowed for a maximum reduction in CO2 emissions of 6.81%. Depending on the driving conditions, ethanol showed a reduction ranging from 3.60 to 6.81%, while propane exhibited a reduction ranging from 3.10 to 5.64%. Additionally, by substituting with ethanol and propane, the GIE could be improved up to 44.73 and 43.56%, respectively.

Abstract Image

单缸发动机在反应控制压燃条件下用乙醇和丙烷替代汽油降低二氧化碳排放潜力的实验研究
本实验以汽油、乙醇和丙烷为低活性燃料,在四种操作条件下对 RCCI 燃烧的燃烧和排气特性以及热效率进行了实验研究。在每种操作条件下,gISNOx 被限制在 0.15 克/千瓦时,gISSmoke 被限制在 15 毫克/千瓦时以下。实验通过确定满足这些限制条件的运行条件来实现最高的城市热效率。低活性燃料通过端口喷射提供,而柴油则使用柴油喷射器直接喷入燃烧室。因此,当用乙醇和丙烷等低碳燃料替代汽油时,二氧化碳排放量会减少。在最大功率条件下,使用乙醇可使二氧化碳排放量最大减少 6.81%。根据不同的驾驶条件,乙醇的减排量在 3.60% 到 6.81% 之间,而丙烷的减排量在 3.10% 到 5.64% 之间。此外,通过使用乙醇和丙烷替代燃料,GIE 可分别提高到 44.73% 和 43.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信