Joins and meets in effect algebras

IF 0.6 4区 数学 Q3 MATHEMATICS
Grzegorz Bińczak, Joanna Kaleta, Andrzej Zembrzuski
{"title":"Joins and meets in effect algebras","authors":"Grzegorz Bińczak,&nbsp;Joanna Kaleta,&nbsp;Andrzej Zembrzuski","doi":"10.1007/s00012-024-00844-w","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that every effect algebra can be represented as the effect algebra of perspectivity classes of some <i>E</i>-test space. We describe when there exists join and meet of two perspectivity classes of events of some algebraic <i>E</i>-test space. Moreover we give the formula for join and meet of perspectivity classes mentioned above, using only tests. We obtain an example of finite, non-homogeneous effect algebra <i>E</i> such that sharp elements of <i>E</i> form a lattice, whereas <i>E</i> is not a lattice.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00844-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00844-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that every effect algebra can be represented as the effect algebra of perspectivity classes of some E-test space. We describe when there exists join and meet of two perspectivity classes of events of some algebraic E-test space. Moreover we give the formula for join and meet of perspectivity classes mentioned above, using only tests. We obtain an example of finite, non-homogeneous effect algebra E such that sharp elements of E form a lattice, whereas E is not a lattice.

效应代数中的连接和相遇
众所周知,每个效应代数都可以表示为某个 E 检验空间的透视度类的效应代数。我们将描述在什么情况下存在某个代数 E 检验空间的两个事件视角类的连结和相遇。此外,我们还给出了上述仅使用检验的视角类的连结和相遇公式。我们得到了一个有限、非同质效应代数 E 的例子,使得 E 的尖元素构成一个格,而 E 不是一个格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信