Synthesis of Quinolines from 2-amino aryl ketones: Probing the Lewis Acid Sites of Metal-Organic Framework Catalyst

IF 1.7 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Bandarupalli Krishna, Sounak Roy
{"title":"Synthesis of Quinolines from 2-amino aryl ketones: Probing the Lewis Acid Sites of Metal-Organic Framework Catalyst","authors":"Bandarupalli Krishna,&nbsp;Sounak Roy","doi":"10.1007/s12039-024-02257-7","DOIUrl":null,"url":null,"abstract":"<div><p>Recent research underscores the significance of metal-organic frameworks as catalysts, owing to their structural adaptability, substantial surface areas, adjustable pore dimensions, and customizable catalytic sites. Using Friedländer synthesis, we evaluated the catalytic potential of three synthesized metal-organic framework materials, MIL-53(Al), MIL-101(Cr), and MOF-5(Zn), in quinoline derivative synthesis. MIL-53(Al) outperformed MIL-101(Cr) and MOF-5(Zn), highlighting the vital role of Lewis acidic sites (Al<sup>3+</sup>) in quinoline production. Potentiometric titration analyses revealed MIL-53(Al)'s superior Lewis acid strength. Reaction optimization involved varying temperatures, catalyst loading, reaction duration, and solvents. MIL-53(Al) exhibited four-cycle recyclability. Mechanistic insights underscored Lewis acid strength and the significance of sites. The Al-based catalyst proficiently facilitated Friedlander synthesis, yielding enhanced conversion and considerable physiologically active quinoline yields. The findings offer insights into diverse catalytic strategies and demonstrate the adaptability of metal-organic framework materials in varied chemical reactions.</p><h3>Graphical Abstract</h3><p>The Al-based Lewis acid MOF catalyst MIL-53(Al) efficiently facilitated the Friedlander synthesis, resulting in improved conversion and significant yields of physiologically active quinolines. These findings provide insights into versatile catalytic strategies and showcase the adaptability of MOFs in diverse chemical reactions.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02257-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research underscores the significance of metal-organic frameworks as catalysts, owing to their structural adaptability, substantial surface areas, adjustable pore dimensions, and customizable catalytic sites. Using Friedländer synthesis, we evaluated the catalytic potential of three synthesized metal-organic framework materials, MIL-53(Al), MIL-101(Cr), and MOF-5(Zn), in quinoline derivative synthesis. MIL-53(Al) outperformed MIL-101(Cr) and MOF-5(Zn), highlighting the vital role of Lewis acidic sites (Al3+) in quinoline production. Potentiometric titration analyses revealed MIL-53(Al)'s superior Lewis acid strength. Reaction optimization involved varying temperatures, catalyst loading, reaction duration, and solvents. MIL-53(Al) exhibited four-cycle recyclability. Mechanistic insights underscored Lewis acid strength and the significance of sites. The Al-based catalyst proficiently facilitated Friedlander synthesis, yielding enhanced conversion and considerable physiologically active quinoline yields. The findings offer insights into diverse catalytic strategies and demonstrate the adaptability of metal-organic framework materials in varied chemical reactions.

Graphical Abstract

The Al-based Lewis acid MOF catalyst MIL-53(Al) efficiently facilitated the Friedlander synthesis, resulting in improved conversion and significant yields of physiologically active quinolines. These findings provide insights into versatile catalytic strategies and showcase the adaptability of MOFs in diverse chemical reactions.

Abstract Image

从 2-氨基芳基酮合成喹啉:探究金属有机框架催化剂的路易斯酸位点
最近的研究强调了金属有机框架作为催化剂的重要性,因为它们具有结构适应性、巨大的比表面积、可调节的孔隙尺寸以及可定制的催化位点。我们利用弗里德兰合成法评估了三种合成的金属有机框架材料 MIL-53(Al)、MIL-101(Cr) 和 MOF-5(Zn)在喹啉衍生物合成中的催化潜力。MIL-53(Al)的性能优于 MIL-101(Cr)和 MOF-5(Zn),凸显了路易斯酸位点(Al3+)在喹啉生产中的重要作用。电位滴定分析表明,MIL-53(Al) 的路易斯酸强度更高。反应优化包括改变温度、催化剂负载、反应时间和溶剂。MIL-53(Al) 具有四次循环的可回收性。机理分析强调了路易斯酸强度和位点的重要性。铝基催化剂有效地促进了弗里德兰德合成,提高了转化率,并产生了大量具有生理活性的喹啉。图解 摘要基于铝的路易斯酸 MOF 催化剂 MIL-53(Al)能有效促进弗里德兰德合成,从而提高转化率和具有生理活性的喹啉的产量。这些发现为多功能催化策略提供了见解,并展示了 MOFs 在各种化学反应中的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Sciences
Journal of Chemical Sciences CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
5.90%
发文量
107
审稿时长
1 months
期刊介绍: Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信