{"title":"Automatic grasp planning for self-adjustable gripper frames","authors":"Jeroen Cramer, Martijn Cramer, Karel Kellens","doi":"10.1186/s40648-024-00271-5","DOIUrl":null,"url":null,"abstract":"In high-mix, low-volume manufacturing, end-of-arm tooling (EOAT) must be able to handle various products. Conventional EOATs usually comprise fixed or limited-adjustable frames (i.e. manually or using short-stroke pistons) over-equipped with multiple grippers, which are selectively activated based on the product to be grasped. This paper presents a smart gripper frame equipped with only four grippers capable of automatically adjusting to a product’s unique geometry. To this end, a two-dimensional grasp planner has been developed that is supplied with product contours from depth images. The proposed approach has been successfully validated in multiple industrial use cases involving objects with different dimensions and materials, and applying various grippers.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":"29 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40648-024-00271-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
In high-mix, low-volume manufacturing, end-of-arm tooling (EOAT) must be able to handle various products. Conventional EOATs usually comprise fixed or limited-adjustable frames (i.e. manually or using short-stroke pistons) over-equipped with multiple grippers, which are selectively activated based on the product to be grasped. This paper presents a smart gripper frame equipped with only four grippers capable of automatically adjusting to a product’s unique geometry. To this end, a two-dimensional grasp planner has been developed that is supplied with product contours from depth images. The proposed approach has been successfully validated in multiple industrial use cases involving objects with different dimensions and materials, and applying various grippers.
期刊介绍:
ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications