Nikolaos Tsamandouras, Ruolun Qiu, Jim H. Hughes, Kevin Sweeney, John P. Prybylski, Christopher Banfield, Timothy Nicholas
{"title":"Employing zero-inflated beta distribution in an exposure-response analysis of TYK2/JAK1 inhibitor brepocitinib in patients with plaque psoriasis","authors":"Nikolaos Tsamandouras, Ruolun Qiu, Jim H. Hughes, Kevin Sweeney, John P. Prybylski, Christopher Banfield, Timothy Nicholas","doi":"10.1007/s10928-024-09901-2","DOIUrl":null,"url":null,"abstract":"<p>Brepocitinib is an oral selective dual TYK2/JAK1 inhibitor and based on its cytokine inhibition profile is expected to provide therapeutic benefit in the treatment of plaque psoriasis. Efficacy data from a completed Phase 2a study in patients with moderate-to-severe plaque psoriasis were utilized to develop a population exposure-response model that can be employed to inform dose selection decisions for further clinical development. A modeling approach that employs the zero-inflated beta distribution was used to account for the bounded nature and distributional characteristics of the Psoriasis Area and Severity Index (PASI) score data. The developed exposure-response model provided an adequate description of the observed PASI scores across all the treatment arms tested and across both the induction and maintenance dosing periods of the study. In addition, the developed model exhibited a good predictive capacity with regard to the derived responder metrics (e.g., 75%/90%/100% improvement in PASI score [PASI75/90/100]). Clinical trial simulations indicated that the induction/maintenance dosing paradigm explored in this study does not offer any advantages from an efficacy perspective and that doses of 10, 30, and 60 mg once-daily may be suitable candidates for clinical evaluation in subsequent Phase 2b studies.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"80 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09901-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Brepocitinib is an oral selective dual TYK2/JAK1 inhibitor and based on its cytokine inhibition profile is expected to provide therapeutic benefit in the treatment of plaque psoriasis. Efficacy data from a completed Phase 2a study in patients with moderate-to-severe plaque psoriasis were utilized to develop a population exposure-response model that can be employed to inform dose selection decisions for further clinical development. A modeling approach that employs the zero-inflated beta distribution was used to account for the bounded nature and distributional characteristics of the Psoriasis Area and Severity Index (PASI) score data. The developed exposure-response model provided an adequate description of the observed PASI scores across all the treatment arms tested and across both the induction and maintenance dosing periods of the study. In addition, the developed model exhibited a good predictive capacity with regard to the derived responder metrics (e.g., 75%/90%/100% improvement in PASI score [PASI75/90/100]). Clinical trial simulations indicated that the induction/maintenance dosing paradigm explored in this study does not offer any advantages from an efficacy perspective and that doses of 10, 30, and 60 mg once-daily may be suitable candidates for clinical evaluation in subsequent Phase 2b studies.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.