The Action of One-dimensional Spatial Temperature Modulation on Dynamics of a Floating Droplet Heated from Below

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Ilya Simanovskii, Alexander Nepomnyashchy, Antonio Viviani, Patrick Queeckers
{"title":"The Action of One-dimensional Spatial Temperature Modulation on Dynamics of a Floating Droplet Heated from Below","authors":"Ilya Simanovskii,&nbsp;Alexander Nepomnyashchy,&nbsp;Antonio Viviani,&nbsp;Patrick Queeckers","doi":"10.1007/s12217-024-10103-1","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamics of a droplet on a liquid substrate in the case of an inhomogeneous heating from below has been investigated. The problem is studied numerically in the framework of the slender droplet approximation and the precursor model. The change of the stationary droplet’s shape and the rupture of the substrate layer induced by a floating droplet are investigated. The influence of the gravity force on the shape of the droplet is studied.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10103-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of a droplet on a liquid substrate in the case of an inhomogeneous heating from below has been investigated. The problem is studied numerically in the framework of the slender droplet approximation and the precursor model. The change of the stationary droplet’s shape and the rupture of the substrate layer induced by a floating droplet are investigated. The influence of the gravity force on the shape of the droplet is studied.

Abstract Image

Abstract Image

一维空间温度调制对自下而上加热的漂浮液滴动力学的影响
研究了液态基底上的液滴在自下而上不均匀加热情况下的动力学。在细长液滴近似和前驱体模型的框架内对该问题进行了数值研究。研究了静止液滴形状的变化以及浮动液滴引起的基底层破裂。研究了重力对液滴形状的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信