{"title":"Purity Determination of High-Purity BeO using Gravimetric Analysis with Stepwise Conversions of Weighing Form of Be","authors":"Tsutomu Miura","doi":"10.1016/j.talo.2024.100307","DOIUrl":null,"url":null,"abstract":"<div><p>Ensuring accurate and precise measurements of analytes is crucial in gravimetric analysis but can be jeopardized by overlooking analyte in the filtrate, washing solutions, residue during analytical procedure, and weighing form of analyte. To address this issue, a stoichiometric approach for the purity determination of high-purity BeO was developed using gravimetric analysis. This method involved the systematic stoichiometric evaluation of the stepwise conversion of the different weighing forms of Be. The initial BeO sample underwent sequential conversion to the Be complex with <em>N</em>-benzoyl-<em>N</em>-phenyl hydroxylamine, BeO, and BeSO<sub>4</sub>; each was evaluated for stoichiometry via gravimetric analysis. The amounts of Be in the filtrate and washing solution, and their loss during sample preparation were measured using inductively coupled plasma-optical emission spectrometry (ICP-OES). Additionally, the sulfate content in the BeSO<sub>4</sub> precipitate was determined by the gravimetric analysis of BaSO<sub>4</sub> to validate the stoichiometry of the precipitate. The observed mass ratios of different Be weighing forms were compared with the theoretical values at each conversion step. The composition of the final converted BeSO<sub>4,</sub> i.e., the observed mass ratio of BaSO<sub>4</sub>/BeSO<sub>4</sub>, was comparable to the theoretical composition. The purity of the initial BeO sample was determined to be 100.03 % ± 0.17 % (<em>k</em>=2). The measured purity was successfully validated by comparing it with that of NIST SRM 3105a Be standard solution using ICP-OES.</p></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"9 ","pages":"Article 100307"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666831924000213/pdfft?md5=746a22bd6c80cfb90a8e9caf087f68e4&pid=1-s2.0-S2666831924000213-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring accurate and precise measurements of analytes is crucial in gravimetric analysis but can be jeopardized by overlooking analyte in the filtrate, washing solutions, residue during analytical procedure, and weighing form of analyte. To address this issue, a stoichiometric approach for the purity determination of high-purity BeO was developed using gravimetric analysis. This method involved the systematic stoichiometric evaluation of the stepwise conversion of the different weighing forms of Be. The initial BeO sample underwent sequential conversion to the Be complex with N-benzoyl-N-phenyl hydroxylamine, BeO, and BeSO4; each was evaluated for stoichiometry via gravimetric analysis. The amounts of Be in the filtrate and washing solution, and their loss during sample preparation were measured using inductively coupled plasma-optical emission spectrometry (ICP-OES). Additionally, the sulfate content in the BeSO4 precipitate was determined by the gravimetric analysis of BaSO4 to validate the stoichiometry of the precipitate. The observed mass ratios of different Be weighing forms were compared with the theoretical values at each conversion step. The composition of the final converted BeSO4, i.e., the observed mass ratio of BaSO4/BeSO4, was comparable to the theoretical composition. The purity of the initial BeO sample was determined to be 100.03 % ± 0.17 % (k=2). The measured purity was successfully validated by comparing it with that of NIST SRM 3105a Be standard solution using ICP-OES.