Paul Cachera , Nikolaj Can Kurt , Andreas Røpke , Tomas Strucko , Uffe H. Mortensen , Michael K. Jensen
{"title":"Genome-wide host-pathway interactions affecting cis-cis-muconic acid production in yeast","authors":"Paul Cachera , Nikolaj Can Kurt , Andreas Røpke , Tomas Strucko , Uffe H. Mortensen , Michael K. Jensen","doi":"10.1016/j.ymben.2024.02.015","DOIUrl":null,"url":null,"abstract":"<div><p>The success of forward metabolic engineering depends on a thorough understanding of the behaviour of a heterologous metabolic pathway within its host. We have recently described CRI-SPA, a high-throughput gene editing method enabling the delivery of a metabolic pathway to all strains of the <em>Saccharomyces cerevisiae</em> knock-out library. CRI-SPA systematically quantifies the effect of each modified gene present in the library on product synthesis, providing a complete map of host:pathway interactions. In its first version, CRI-SPA relied on the colour of the product betaxanthins to quantify strains synthesis ability. However, only a few compounds produce a visible or fluorescent phenotype limiting the scope of our approach. Here, we adapt CRI-SPA to onboard a biosensor reporting the interactions between host genes and the synthesis of the colourless product <em>cis-cis</em>-muconic acid (CCM). We phenotype >9,000 genotypes, including both gene knock-out and overexpression, by quantifying the fluorescence of yeast colonies growing in high-density agar arrays. We identify novel metabolic targets belonging to a broad range of cellular functions and confirm their positive impact on CCM biosynthesis. In particular, our data suggests a new interplay between CCM biosynthesis and cytosolic redox through their common interaction with the oxidative pentose phosphate pathway. Our genome-wide exploration of host:pathway interaction opens novel strategies for improved production of CCM in yeast cell factories.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624000314/pdfft?md5=000dae8c0e47818ab85462dc691b57cd&pid=1-s2.0-S1096717624000314-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000314","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The success of forward metabolic engineering depends on a thorough understanding of the behaviour of a heterologous metabolic pathway within its host. We have recently described CRI-SPA, a high-throughput gene editing method enabling the delivery of a metabolic pathway to all strains of the Saccharomyces cerevisiae knock-out library. CRI-SPA systematically quantifies the effect of each modified gene present in the library on product synthesis, providing a complete map of host:pathway interactions. In its first version, CRI-SPA relied on the colour of the product betaxanthins to quantify strains synthesis ability. However, only a few compounds produce a visible or fluorescent phenotype limiting the scope of our approach. Here, we adapt CRI-SPA to onboard a biosensor reporting the interactions between host genes and the synthesis of the colourless product cis-cis-muconic acid (CCM). We phenotype >9,000 genotypes, including both gene knock-out and overexpression, by quantifying the fluorescence of yeast colonies growing in high-density agar arrays. We identify novel metabolic targets belonging to a broad range of cellular functions and confirm their positive impact on CCM biosynthesis. In particular, our data suggests a new interplay between CCM biosynthesis and cytosolic redox through their common interaction with the oxidative pentose phosphate pathway. Our genome-wide exploration of host:pathway interaction opens novel strategies for improved production of CCM in yeast cell factories.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.