{"title":"Capturing the Chirality of Photoexcited States with Ultrafast Circular Dichroism.","authors":"Malte Oppermann","doi":"10.2533/chimia.2024.45","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other but non-superimposable. Even though enantiomers share most chemical and physical properties, they may differ greatly in their (bio-)chemical activities, which turns chirality into a key design feature for (bio-)chemical function. In this spirit, the incorporation of chiral structures into photochemical systems has emerged as a powerful strategy to control their functions. For example, uni-directional molecular motors, chiral photocatalysts, and chiral metal nanostructures permit new levels of stereocontrol over mechanical motion, energy transfer, and electric charge-carriers on the nanoscale. However, the direct characterization of the underlying chiral photoexcited states remains a formidable experimental challenge - especially in the native solution phase of many photochemical processes. Crucially, this requires analytical techniques that combine a high chiral sensitivity in solution with ultrafast time resolution to capture the excited state dynamics. This brief perspective article presents recent progress in the development of ultrafast chiral spectroscopy techniques that address this challenge.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"45-49"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2024.45","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other but non-superimposable. Even though enantiomers share most chemical and physical properties, they may differ greatly in their (bio-)chemical activities, which turns chirality into a key design feature for (bio-)chemical function. In this spirit, the incorporation of chiral structures into photochemical systems has emerged as a powerful strategy to control their functions. For example, uni-directional molecular motors, chiral photocatalysts, and chiral metal nanostructures permit new levels of stereocontrol over mechanical motion, energy transfer, and electric charge-carriers on the nanoscale. However, the direct characterization of the underlying chiral photoexcited states remains a formidable experimental challenge - especially in the native solution phase of many photochemical processes. Crucially, this requires analytical techniques that combine a high chiral sensitivity in solution with ultrafast time resolution to capture the excited state dynamics. This brief perspective article presents recent progress in the development of ultrafast chiral spectroscopy techniques that address this challenge.
期刊介绍:
CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.