Jonas Müller, Xiaoqin Chen, Arne Ohlendorf, Lihua Li, Siegfried Wahl
{"title":"Method comparison and overview of refractive measurements in children: implications for myopia management.","authors":"Jonas Müller, Xiaoqin Chen, Arne Ohlendorf, Lihua Li, Siegfried Wahl","doi":"10.1136/bmjophth-2023-001322","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study investigated the agreement between objective wavefront-based refraction and subjective refraction in myopic children. It also assessed the impact of cyclopentolate and refraction levels on the agreement.</p><p><strong>Methods: </strong>A total of 84 eyes of myopic children aged 6-13 years were included in the analysis. Non-cycloplegic and cycloplegic objective wavefront-based refraction were determined and cycloplegic subjective refraction was performed for each participant. The data were converted into spherical equivalent, J<sub>0</sub> and J<sub>45</sub>, and Bland-Altman plots were used to analyse the agreement between methods.</p><p><strong>Results: </strong>Linear functions were used to determine the dependency between the central myopic refractive error and the difference between the method of refraction (=bias). The influence of central myopia was not clinically relevant when analysing the agreement between wavefront results with and without cyclopentolate (comparison 1). The bias for wavefront-based minus subjective spherical equivalent refraction (comparison 2) was ≤-0.50 D (95% limits of agreement -0.010 D to -1.00 D) for myopia of -4.55 D and higher when cycloplegia was used (p<0.05). When no cyclopentolate was used for the wavefront-based refraction (comparison 3), the bias of -0.50 D (95% limits of agreement -0.020 D to -0.97 D) was already reached at a myopic error of -2.97 D. Both astigmatic components showed no clinically relevant bias.</p><p><strong>Conclusion: </strong>The spherical equivalent, measured without cycloplegic agents, led to more myopic measurements when wavefront-based refraction was used. The observed bias increased with the amount of myopic refractive error for comparisons 2 and 3, which needs to be considered when interpreting wavefront-refraction data.</p><p><strong>Trial registration number: </strong>NCT05288335.</p>","PeriodicalId":9286,"journal":{"name":"BMJ Open Ophthalmology","volume":"9 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjophth-2023-001322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study investigated the agreement between objective wavefront-based refraction and subjective refraction in myopic children. It also assessed the impact of cyclopentolate and refraction levels on the agreement.
Methods: A total of 84 eyes of myopic children aged 6-13 years were included in the analysis. Non-cycloplegic and cycloplegic objective wavefront-based refraction were determined and cycloplegic subjective refraction was performed for each participant. The data were converted into spherical equivalent, J0 and J45, and Bland-Altman plots were used to analyse the agreement between methods.
Results: Linear functions were used to determine the dependency between the central myopic refractive error and the difference between the method of refraction (=bias). The influence of central myopia was not clinically relevant when analysing the agreement between wavefront results with and without cyclopentolate (comparison 1). The bias for wavefront-based minus subjective spherical equivalent refraction (comparison 2) was ≤-0.50 D (95% limits of agreement -0.010 D to -1.00 D) for myopia of -4.55 D and higher when cycloplegia was used (p<0.05). When no cyclopentolate was used for the wavefront-based refraction (comparison 3), the bias of -0.50 D (95% limits of agreement -0.020 D to -0.97 D) was already reached at a myopic error of -2.97 D. Both astigmatic components showed no clinically relevant bias.
Conclusion: The spherical equivalent, measured without cycloplegic agents, led to more myopic measurements when wavefront-based refraction was used. The observed bias increased with the amount of myopic refractive error for comparisons 2 and 3, which needs to be considered when interpreting wavefront-refraction data.