{"title":"Eigenstate properties of the disordered Bose–Hubbard chain","authors":"Jie Chen, Chun Chen, Xiaoqun Wang","doi":"10.1007/s11467-023-1384-1","DOIUrl":null,"url":null,"abstract":"<div><p>Many-body localization (MBL) of a disordered interacting boson system in one dimension is studied numerically at the filling faction one-half. The von Neumann entanglement entropy <i>S</i><sub>vN</sub> is commonly used to detect the MBL phase transition but remains challenging to be directly measured. Based on the <i>U</i>(1) symmetry from the particle number conservation, <i>S</i><sub>vN</sub> can be decomposed into the particle number entropy <i>S</i><sub><i>N</i></sub> and the configuration entropy <i>S</i><sub><i>C</i></sub>. In light of the tendency that the eigenstate’s <i>S</i><sub><i>C</i></sub> nears zero in the localized phase, we introduce a quantity describing the deviation of <i>S</i><sub><i>N</i></sub> from the ideal thermalization distribution; finite-size scaling analysis illustrates that it shares the same phase transition point with <i>S</i><sub>vN</sub> but displays the better critical exponents. This observation hints that the phase transition to MBL might largely be determined by <i>S</i><sub><i>N</i></sub> and its fluctuations. Notably, the recent experiments [A. Lukin, <i>et al.</i>, <i>Science</i> 364, 256 (2019); J. Léonard, <i>et al.</i>, <i>Nat. Phys.</i> 19, 481 (2023)] demonstrated that this deviation can potentially be measured through the <i>S</i><sub><i>N</i></sub> measurement. Furthermore, our investigations reveal that the thermalized states primarily occupy the low-energy section of the spectrum, as indicated by measures of localization length, gap ratio, and energy density distribution. This low-energy spectrum of the Bose model closely resembles the entire spectrum of the Fermi (or spin <i>XXZ</i>) model, accommodating a transition from the thermalized to the localized states. While, owing to the bosonic statistics, the high-energy spectrum of the model allows the formation of distinct clusters of bosons in the random potential background. We analyze the resulting eigenstate properties and briefly summarize the associated dynamics. To distinguish between the phase regions at the low and high energies, a probing quantity based on the structure of <i>S</i><sub>vN</sub> is also devised. Our work highlights the importance of symmetry combined with entanglement in the study of MBL. In this regard, for the disordered Heisenberg <i>XXZ</i> chain, the recent pure eigenvalue analyses in [J. Suntajs, <i>et al.</i>, <i>Phys. Rev. E</i> 102, 062144 (2020)] would appear inadequate, while methods used in [A. Morningstar, <i>et al.</i>, <i>Phys. Rev. B</i> 105, 174205 (2022)] that spoil the <i>U</i>(1) symmetry could be misleading.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1384-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many-body localization (MBL) of a disordered interacting boson system in one dimension is studied numerically at the filling faction one-half. The von Neumann entanglement entropy SvN is commonly used to detect the MBL phase transition but remains challenging to be directly measured. Based on the U(1) symmetry from the particle number conservation, SvN can be decomposed into the particle number entropy SN and the configuration entropy SC. In light of the tendency that the eigenstate’s SC nears zero in the localized phase, we introduce a quantity describing the deviation of SN from the ideal thermalization distribution; finite-size scaling analysis illustrates that it shares the same phase transition point with SvN but displays the better critical exponents. This observation hints that the phase transition to MBL might largely be determined by SN and its fluctuations. Notably, the recent experiments [A. Lukin, et al., Science 364, 256 (2019); J. Léonard, et al., Nat. Phys. 19, 481 (2023)] demonstrated that this deviation can potentially be measured through the SN measurement. Furthermore, our investigations reveal that the thermalized states primarily occupy the low-energy section of the spectrum, as indicated by measures of localization length, gap ratio, and energy density distribution. This low-energy spectrum of the Bose model closely resembles the entire spectrum of the Fermi (or spin XXZ) model, accommodating a transition from the thermalized to the localized states. While, owing to the bosonic statistics, the high-energy spectrum of the model allows the formation of distinct clusters of bosons in the random potential background. We analyze the resulting eigenstate properties and briefly summarize the associated dynamics. To distinguish between the phase regions at the low and high energies, a probing quantity based on the structure of SvN is also devised. Our work highlights the importance of symmetry combined with entanglement in the study of MBL. In this regard, for the disordered Heisenberg XXZ chain, the recent pure eigenvalue analyses in [J. Suntajs, et al., Phys. Rev. E 102, 062144 (2020)] would appear inadequate, while methods used in [A. Morningstar, et al., Phys. Rev. B 105, 174205 (2022)] that spoil the U(1) symmetry could be misleading.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.