A note on a theorem on conjugacy class sizes

IF 1.1 4区 数学 Q1 MATHEMATICS
Qingjun Kong, Mengjiao Shi
{"title":"A note on a theorem on conjugacy class sizes","authors":"Qingjun Kong, Mengjiao Shi","doi":"10.1007/s11587-024-00849-6","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(p\\)</span> be a fixed prime, <span>\\(a\\)</span> and <span>\\(n\\)</span> are positive integers such that <span>\\((p,n) = 1\\)</span>. It is shown that if <span>\\(G\\)</span> is a finite group such that for every prime <span>\\(q\\)</span> the set of the conjugacy class sizes of all <span>\\(\\{ p,q\\} -\\)</span> elements of <span>\\(G\\)</span> is <span>\\(\\left\\{ {1,p^{a} {,}n,p^{a} n} \\right\\}\\)</span>, and there is a <span>\\(p -\\)</span> element in <span>\\(G\\)</span> whose conjugacy class has size <span>\\(p^{a}\\)</span>, then <span>\\(G\\)</span> is nilpotent and <span>\\(n\\)</span> is a prime power.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"46 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00849-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(p\) be a fixed prime, \(a\) and \(n\) are positive integers such that \((p,n) = 1\). It is shown that if \(G\) is a finite group such that for every prime \(q\) the set of the conjugacy class sizes of all \(\{ p,q\} -\) elements of \(G\) is \(\left\{ {1,p^{a} {,}n,p^{a} n} \right\}\), and there is a \(p -\) element in \(G\) whose conjugacy class has size \(p^{a}\), then \(G\) is nilpotent and \(n\) is a prime power.

关于共轭类大小定理的说明
让(p)是一个固定的素数,(a)和(n)是正整数,使得(((p,n)=1)。研究表明,如果\(G\)是一个有限群,对于每个素数\(q\),\(G\)的所有\({ p,q\} -\) 元素的共轭类大小的集合是\(\left\{1、p^{a}{,}n,p^{a}n}(right\}),并且在(G)中有一个(p -)元素,它的共轭类的大小是(p^{a}\),那么(G)是无幂的,并且(n)是一个素幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信