Visualizing Ultrasound Sources Using Signal Time Reversal in the Particle Dynamics Model

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS
D. Ya. Sukhanov, A. E. Kuzovova
{"title":"Visualizing Ultrasound Sources Using Signal Time Reversal in the Particle Dynamics Model","authors":"D. Ya. Sukhanov,&nbsp;A. E. Kuzovova","doi":"10.1134/S1063771023601188","DOIUrl":null,"url":null,"abstract":"<div><p>A method is proposed for solving the inverse problem of reconstructing acoustic wave sources from field measurements on some surface using wavefront reversal in the particle dynamics method. In this method, the studied medium is represented as a set of interacting particles (material points or solid bodies), for which classical equations of motion are written. The paper considers the representation of a medium as a set of particles in a body-centered cubic crystal lattice. The case of a linear dependence of the force of attraction of particles on distance is considered. The advantage of this approach is the ability to take into account wave propagation in arbitrarily inhomogeneous media using a single numerical model. The possibility of visualizing two spherical acoustic wave sources in water behind an obstacle has been demonstrated numerically and experimentally, despite the presence of transverse waves in the considered model of a solid body; their influence is negligible in this case. The method was tested experimentally on a soundproof screen with an aperture simulating a sound-emitting object of complex shape. A wave from a point source of short pulses passes through the aperture. Using a receiving acoustic sensor mounted on a two-dimensional scanner, the spatiotemporal distribution of sound vibrations on the water surface was measured. By processing the data using wavefront reversal in the particle model, the image of the aperture in the soundproof screen was reconstructed.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"69 6","pages":"884 - 896"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023601188","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A method is proposed for solving the inverse problem of reconstructing acoustic wave sources from field measurements on some surface using wavefront reversal in the particle dynamics method. In this method, the studied medium is represented as a set of interacting particles (material points or solid bodies), for which classical equations of motion are written. The paper considers the representation of a medium as a set of particles in a body-centered cubic crystal lattice. The case of a linear dependence of the force of attraction of particles on distance is considered. The advantage of this approach is the ability to take into account wave propagation in arbitrarily inhomogeneous media using a single numerical model. The possibility of visualizing two spherical acoustic wave sources in water behind an obstacle has been demonstrated numerically and experimentally, despite the presence of transverse waves in the considered model of a solid body; their influence is negligible in this case. The method was tested experimentally on a soundproof screen with an aperture simulating a sound-emitting object of complex shape. A wave from a point source of short pulses passes through the aperture. Using a receiving acoustic sensor mounted on a two-dimensional scanner, the spatiotemporal distribution of sound vibrations on the water surface was measured. By processing the data using wavefront reversal in the particle model, the image of the aperture in the soundproof screen was reconstructed.

Abstract Image

Abstract Image

利用粒子动力学模型中的信号时间反转可视化超声源
本文提出了一种方法,利用粒子动力学方法中的波前反转,解决从某些表面的现场测量结果重建声波源的逆问题。在这种方法中,所研究的介质被表示为一组相互作用的粒子(物质点或固体体),并为其写出经典运动方程。本文考虑将介质表示为体心立方晶格中的一组粒子。本文考虑了粒子吸引力与距离呈线性关系的情况。这种方法的优点是能够使用单一数值模型考虑任意不均匀介质中的波传播。尽管在所考虑的固体模型中存在横波,但在这种情况下,横波的影响可以忽略不计。该方法在带孔的隔音屏上进行了实验测试,模拟了形状复杂的发声物体。来自点声源的短脉冲波穿过光圈。利用安装在二维扫描仪上的接收声学传感器,测量了水面上声音振动的时空分布。通过使用粒子模型中的波前反转处理数据,重建了隔音屏中孔径的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信