{"title":"Adaptive spectral graph wavelets for collaborative filtering","authors":"Osama Alshareet, A. Ben Hamza","doi":"10.1007/s10044-024-01214-x","DOIUrl":null,"url":null,"abstract":"<p>Collaborative filtering is a popular approach in recommender systems, whose objective is to provide personalized item suggestions to potential users based on their purchase or browsing history. However, personalized recommendations require considerable amount of behavioral data on users, which is usually unavailable for new users, giving rise to the cold-start problem. To help alleviate this challenging problem, we introduce a spectral graph wavelet collaborative filtering framework for implicit feedback data, where users, items and their interactions are represented as a bipartite graph. Specifically, we first propose an adaptive transfer function by leveraging a power transform with the goal of stabilizing the variance of graph frequencies in the spectral domain. Then, we design a deep recommendation model for efficient learning of low-dimensional embeddings of users and items using spectral graph wavelets in an end-to-end fashion. In addition to capturing the graph’s local and global structures, our approach yields localization of graph signals in both spatial and spectral domains and hence not only learns discriminative representations of users and items, but also promotes the recommendation quality. The effectiveness of our proposed model is demonstrated through extensive experiments on real-world benchmark datasets, achieving better recommendation performance compared with strong baseline methods.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"2673 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01214-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Collaborative filtering is a popular approach in recommender systems, whose objective is to provide personalized item suggestions to potential users based on their purchase or browsing history. However, personalized recommendations require considerable amount of behavioral data on users, which is usually unavailable for new users, giving rise to the cold-start problem. To help alleviate this challenging problem, we introduce a spectral graph wavelet collaborative filtering framework for implicit feedback data, where users, items and their interactions are represented as a bipartite graph. Specifically, we first propose an adaptive transfer function by leveraging a power transform with the goal of stabilizing the variance of graph frequencies in the spectral domain. Then, we design a deep recommendation model for efficient learning of low-dimensional embeddings of users and items using spectral graph wavelets in an end-to-end fashion. In addition to capturing the graph’s local and global structures, our approach yields localization of graph signals in both spatial and spectral domains and hence not only learns discriminative representations of users and items, but also promotes the recommendation quality. The effectiveness of our proposed model is demonstrated through extensive experiments on real-world benchmark datasets, achieving better recommendation performance compared with strong baseline methods.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.