Level aspect exponential sums involving Fourier coefficients of symmetric-square lifts

IF 0.6 3区 数学 Q3 MATHEMATICS
F. Hou
{"title":"Level aspect exponential sums involving Fourier coefficients of symmetric-square lifts","authors":"F. Hou","doi":"10.1007/s10474-024-01411-4","DOIUrl":null,"url":null,"abstract":"<div><p>Fix an integer <span>\\(\\kappa\\ge 2\\)</span>. Let <span>\\(P\\ge 2\\)</span> be a prime, and <span>\\(F\\)</span> be the\nsymmetric-square lift of a Hecke newform <span>\\(f\\in \\mathcal{S}^ {\\ast} _\\kappa(P)\\)</span>. We study the exponential sum\n</p><div><div><span>$$\\begin{aligned}\\mathscr{L}_F(\\alpha)=\\sum_{n\\sim N} A_F(n,1)e(n \\alpha) \\end{aligned}$$</span></div></div><p>\nby implementing an average over a family in such a way to investigate the best\npossible magnitude of the level aspect bound for <span>\\(\\mathscr{L}_F(\\alpha)\\)</span>. We prove a uniform\nbound with respect to any <span>\\(\\alpha \\in \\mathbb{R}\\)</span> and the level parameter <span>\\(P\\)</span>, and present that\nthere exist certain forms with fairly strong oscillations in <span>\\(\\mathscr{L}_F(\\alpha)\\)</span>, if the associated\nlevel of <span>\\(f\\)</span> is allowed to vary. As applications, we consider the shifted convolution\nsums for <span>\\( \\mathrm{GL} (3)\\times \\mathrm{GL} (d)\\)</span>, for any <span>\\(d\\ge 2\\)</span>, in a family as well as theWaring-Goldbach\nproblem associated to Fourier coefficients of <span>\\( \\mathrm{SL} (3,\\mathbb{Z})\\)</span>-Maa<span>\\(\\beta\\)</span> forms.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 2","pages":"306 - 323"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01411-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fix an integer \(\kappa\ge 2\). Let \(P\ge 2\) be a prime, and \(F\) be the symmetric-square lift of a Hecke newform \(f\in \mathcal{S}^ {\ast} _\kappa(P)\). We study the exponential sum

$$\begin{aligned}\mathscr{L}_F(\alpha)=\sum_{n\sim N} A_F(n,1)e(n \alpha) \end{aligned}$$

by implementing an average over a family in such a way to investigate the best possible magnitude of the level aspect bound for \(\mathscr{L}_F(\alpha)\). We prove a uniform bound with respect to any \(\alpha \in \mathbb{R}\) and the level parameter \(P\), and present that there exist certain forms with fairly strong oscillations in \(\mathscr{L}_F(\alpha)\), if the associated level of \(f\) is allowed to vary. As applications, we consider the shifted convolution sums for \( \mathrm{GL} (3)\times \mathrm{GL} (d)\), for any \(d\ge 2\), in a family as well as theWaring-Goldbach problem associated to Fourier coefficients of \( \mathrm{SL} (3,\mathbb{Z})\)-Maa\(\beta\) forms.

涉及对称平方升降机傅里叶系数的水平方面指数和
固定一个整数让 \(P\ge 2\) 是一个质数,并且 \(F\) 是一个 Hecke newform \(f\in \mathcal{S}^ {\ast} _\kappa(P)\) 的对称平方提升。我们研究指数和$$begin{aligned}\mathscr{L}_F(\alpha)=\sum_{n\sim N}.A_F(n,1)e(n\alpha)\end{aligned}$$通过对一个系列进行平均,以研究 \(\mathscr{L}_F(\alpha)\) 的水平方面约束的最佳可能大小。我们证明了关于任意 \(\alpha \in \mathbb{R}\)和水平参数 \(P\)的统一约束,并指出如果允许相关的水平参数变化,存在某些形式的 \(\mathscr{L}_F(\alpha)\)具有相当强的振荡。作为应用,我们考虑了对于任意的(dge 2),在一个族中(\(\mathrm{GL} (3)次\mathrm{GL} (d))的移位卷积以及与(\(\mathrm{SL} (3,\mathbb{Z}))-Maa\(beta\) 形式的傅里叶系数相关的Waring-Goldbach问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信