An optimization approach control of EV solar charging system with step-up DC–DC converter

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
R. J. Venkatesh, R. Priya, P. Hemachandu, Chinthalacheruvu Venkata Krishna Reddy
{"title":"An optimization approach control of EV solar charging system with step-up DC–DC converter","authors":"R. J. Venkatesh,&nbsp;R. Priya,&nbsp;P. Hemachandu,&nbsp;Chinthalacheruvu Venkata Krishna Reddy","doi":"10.1007/s10470-024-02253-4","DOIUrl":null,"url":null,"abstract":"<div><p>An optimization technique for the control of a photovoltaic (PV)-fed electric vehicle (EV) solar charging station with a high gain of step-up dc-to-dc converter. An optimization approach is the Namib beetle optimization (NBOA) approach. This approach is used to control the EV solar charging station. Also, the principles of a switched capacitor and a coupled inductor are integrated into the interleaved structure of the NBOA converter to produce low-current, high-efficiency, and high-voltage gain. However, the major contribution is to minimize the total harmonic distortion (THD) and to control the EV solar Charging Station. The bi-directional DC-to-DC converter in an energy-storage-system has the advantages of high efficiency and fast response speed. By then, the NBOA technique is done in MATLAB software, and the performance is evaluated with the existing techniques. The NBOA system has low THD and high efficiency, which is compared with the existing ant-lion optimizer, wild horse optimizer, and salp-swarm algorithm, methods. From the analysis, the NBOA method provides a better outcome than the existing one.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"119 2","pages":"215 - 232"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-024-02253-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

An optimization technique for the control of a photovoltaic (PV)-fed electric vehicle (EV) solar charging station with a high gain of step-up dc-to-dc converter. An optimization approach is the Namib beetle optimization (NBOA) approach. This approach is used to control the EV solar charging station. Also, the principles of a switched capacitor and a coupled inductor are integrated into the interleaved structure of the NBOA converter to produce low-current, high-efficiency, and high-voltage gain. However, the major contribution is to minimize the total harmonic distortion (THD) and to control the EV solar Charging Station. The bi-directional DC-to-DC converter in an energy-storage-system has the advantages of high efficiency and fast response speed. By then, the NBOA technique is done in MATLAB software, and the performance is evaluated with the existing techniques. The NBOA system has low THD and high efficiency, which is compared with the existing ant-lion optimizer, wild horse optimizer, and salp-swarm algorithm, methods. From the analysis, the NBOA method provides a better outcome than the existing one.

Abstract Image

电动汽车太阳能充电系统与升压型 DC-DC 转换器的优化控制方法
一种优化技术,用于控制采用高增益升压型直流-直流转换器的光伏(PV)供电电动汽车(EV)太阳能充电站。优化方法是纳米甲虫优化(NBOA)方法。该方法用于控制电动汽车太阳能充电站。此外,开关电容器和耦合电感器的原理被集成到 NBOA 转换器的交错结构中,以产生低电流、高效率和高电压增益。然而,其主要贡献在于最大限度地降低总谐波失真(THD)和控制电动汽车太阳能充电站。储能系统中的双向直流-直流转换器具有效率高、响应速度快等优点。随后,在 MATLAB 软件中完成了 NBOA 技术,并对其性能与现有技术进行了评估。与现有的蚁狮优化器、野马优化器和 salp-swarm 算法相比,NBOA 系统具有低总谐波失真(THD)和高效率的特点。从分析结果来看,NBOA 方法比现有方法效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信