3D-printed open-source sensor flow cells for microfluidic temperature, electrical conductivity, and pH value determination

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Robin Dinter, Lennart Helwes, Stijn de Vries, Kausik Jegatheeswaran, Henning Jibben, Norbert Kockmann
{"title":"3D-printed open-source sensor flow cells for microfluidic temperature, electrical conductivity, and pH value determination","authors":"Robin Dinter,&nbsp;Lennart Helwes,&nbsp;Stijn de Vries,&nbsp;Kausik Jegatheeswaran,&nbsp;Henning Jibben,&nbsp;Norbert Kockmann","doi":"10.1007/s41981-024-00319-y","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the miniaturization of equipment for flow chemistry and microprocess engineering, low-cost sensors and analytical devices are becoming increasingly important for automated inline process control and monitoring. The combination of 3D printing technology and open-source lab automation facilitates the creation of a microfluidic toolbox containing tailored actuators and sensors for flow chemistry, enabling a flexible and adaptable design and efficient processing and control based on the measured data. This contribution presents a set of 3D-printed microfluidic sensor flow cells for inline measurement of temperature, electrical conductivity (EC), and pH value, while compensating for the temperature dependence of EC and pH. The tailored sensor flow cells were tested using model reactions in a single-phase capillary flow system. They have an accuracy comparable to reference sensors in batch measurements. The sensor data can be used to monitor the reaction progress (conversion), determine the kinetic data (activation energy, pre-exponential factors) of saponification reactions, and identify titration characteristics (equivalence and isoelectric points) of neutralization reactions. Hence, the 3D-printed microfluidic sensor flow cells offer an attractive alternative to commercial analytical flow devices for open-source and low-cost lab automation.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 2","pages":"469 - 479"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00319-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-024-00319-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the miniaturization of equipment for flow chemistry and microprocess engineering, low-cost sensors and analytical devices are becoming increasingly important for automated inline process control and monitoring. The combination of 3D printing technology and open-source lab automation facilitates the creation of a microfluidic toolbox containing tailored actuators and sensors for flow chemistry, enabling a flexible and adaptable design and efficient processing and control based on the measured data. This contribution presents a set of 3D-printed microfluidic sensor flow cells for inline measurement of temperature, electrical conductivity (EC), and pH value, while compensating for the temperature dependence of EC and pH. The tailored sensor flow cells were tested using model reactions in a single-phase capillary flow system. They have an accuracy comparable to reference sensors in batch measurements. The sensor data can be used to monitor the reaction progress (conversion), determine the kinetic data (activation energy, pre-exponential factors) of saponification reactions, and identify titration characteristics (equivalence and isoelectric points) of neutralization reactions. Hence, the 3D-printed microfluidic sensor flow cells offer an attractive alternative to commercial analytical flow devices for open-source and low-cost lab automation.

Graphical abstract

Abstract Image

用于测定微流控温度、电导率和 pH 值的 3D 打印开源传感器流动池
由于流动化学和微过程工程设备的微型化,低成本传感器和分析装置对于自动化在线过程控制和监测变得越来越重要。三维打印技术与开源实验室自动化的结合,有助于创建一个微流控工具箱,其中包含为流动化学量身定制的执行器和传感器,从而实现灵活、适应性强的设计以及基于测量数据的高效处理和控制。本文介绍了一套三维打印微流控传感器流动池,用于在线测量温度、导电率(EC)和 pH 值,同时对导电率和 pH 值的温度依赖性进行补偿。在单相毛细管流动系统中使用模型反应对定制的传感器流动池进行了测试。在批量测量中,它们的精度与参考传感器相当。传感器数据可用于监测反应进程(转化率),确定皂化反应的动力学数据(活化能、前指数),以及识别中和反应的滴定特征(等价点和等电点)。因此,三维打印的微流控传感器流动池为开源和低成本实验室自动化提供了一个极具吸引力的商业分析流动装置替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信