J. Hyttinen, H. Wentzel, R. Österlöf, J. Jerrelind, L. Drugge
{"title":"Development and Analysis of an On-Road Torque Measurement Device for Trucks","authors":"J. Hyttinen, H. Wentzel, R. Österlöf, J. Jerrelind, L. Drugge","doi":"10.1007/s11340-024-01030-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Rolling resistance and aerodynamic losses cause a significant part of a truck’s energy consumption. Therefore there is an interest from both vehicle manufacturers and regulators to measure these losses to understand, quantify and reduce the energy consumption of vehicles. On-road measurements are particularly interesting because it enables testing in various ambient conditions and road surfaces with vehicles in service.</p><h3>Objective</h3><p>Common driving loss measurement devices require unique instrumented measurement wheels, which hinders effective measurements of multiple tyre sets or measurements of vehicles in service. For this purpose, the objective is to develop a novel load-sensing device for measuring braking or driving torque.</p><h3>Methods</h3><p>The strength of the measurement device is calculated using finite element methods, and the output signal is simulated using virtual strain gauge simulations. In addition to the signal simulation, the device is calibrated using a torsional test rig.</p><h3>Results</h3><p>The simulation results confirm that the device fulfils the strength requirements and is able to resolve low torque levels. The output signal is simulated for the novel cascaded multi-Wheatstone bridge using the strains extracted from the finite element analysis. The simulations and measurements show that the measurement signal is linear and not sensitive to other load directions. The device is tested on a truck, and the effort of mounting the device is comparable to a regular tyre change.</p><h3>Conclusions</h3><p>A novel driving loss measurement device design is presented with an innovative positioning of strain gauges decoupling the parasitic loads from the driving loss measurements. The design allows on-road testing using conventional wheels without requiring special measurement wheels or instrumentation of drive shafts, enabling more affordable and accurate measurements.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 4","pages":"455 - 466"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01030-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01030-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Rolling resistance and aerodynamic losses cause a significant part of a truck’s energy consumption. Therefore there is an interest from both vehicle manufacturers and regulators to measure these losses to understand, quantify and reduce the energy consumption of vehicles. On-road measurements are particularly interesting because it enables testing in various ambient conditions and road surfaces with vehicles in service.
Objective
Common driving loss measurement devices require unique instrumented measurement wheels, which hinders effective measurements of multiple tyre sets or measurements of vehicles in service. For this purpose, the objective is to develop a novel load-sensing device for measuring braking or driving torque.
Methods
The strength of the measurement device is calculated using finite element methods, and the output signal is simulated using virtual strain gauge simulations. In addition to the signal simulation, the device is calibrated using a torsional test rig.
Results
The simulation results confirm that the device fulfils the strength requirements and is able to resolve low torque levels. The output signal is simulated for the novel cascaded multi-Wheatstone bridge using the strains extracted from the finite element analysis. The simulations and measurements show that the measurement signal is linear and not sensitive to other load directions. The device is tested on a truck, and the effort of mounting the device is comparable to a regular tyre change.
Conclusions
A novel driving loss measurement device design is presented with an innovative positioning of strain gauges decoupling the parasitic loads from the driving loss measurements. The design allows on-road testing using conventional wheels without requiring special measurement wheels or instrumentation of drive shafts, enabling more affordable and accurate measurements.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.