Extension and embedding theorems for Campanato spaces on C 0 , γ $C^{0,\gamma }$ domains

Pub Date : 2024-02-28 DOI:10.1002/mana.202300092
Damiano Greco, Pier Domenico Lamberti
{"title":"Extension and embedding theorems for Campanato spaces on \n \n \n C\n \n 0\n ,\n γ\n \n \n $C^{0,\\gamma }$\n domains","authors":"Damiano Greco,&nbsp;Pier Domenico Lamberti","doi":"10.1002/mana.202300092","DOIUrl":null,"url":null,"abstract":"<p>We consider Campanato spaces with exponents <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <annotation>$\\lambda, p$</annotation>\n </semantics></math> on domains of class <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>γ</mi>\n </mrow>\n </msup>\n <annotation>$C^{0,\\gamma }$</annotation>\n </semantics></math> in the <i>N</i>-dimensional Euclidean space endowed with a natural anisotropic metric depending on <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math>. We discuss several results including the appropriate Campanato's embedding theorem and we prove that functions of those spaces can be extended to the whole of the Euclidean space without deterioration of the exponents <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <annotation>$\\lambda, p$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Campanato spaces with exponents λ , p $\lambda, p$ on domains of class C 0 , γ $C^{0,\gamma }$ in the N-dimensional Euclidean space endowed with a natural anisotropic metric depending on γ $\gamma$ . We discuss several results including the appropriate Campanato's embedding theorem and we prove that functions of those spaces can be extended to the whole of the Euclidean space without deterioration of the exponents λ , p $\lambda, p$ .

分享
查看原文
C0,γ$C^{0,\gamma }$ 域上坎帕纳托空间的扩展和嵌入定理
我们考虑了在 N 维欧几里得空间的类域上具有指数的坎帕纳托空间,该空间被赋予了一个取决于...的自然各向异性度量。我们讨论了几个结果,包括适当的坎帕纳托嵌入定理,并证明这些空间的函数可以扩展到整个欧几里得空间,而指数不会减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信