{"title":"Extension and embedding theorems for Campanato spaces on \n \n \n C\n \n 0\n ,\n γ\n \n \n $C^{0,\\gamma }$\n domains","authors":"Damiano Greco, Pier Domenico Lamberti","doi":"10.1002/mana.202300092","DOIUrl":null,"url":null,"abstract":"<p>We consider Campanato spaces with exponents <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <annotation>$\\lambda, p$</annotation>\n </semantics></math> on domains of class <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>γ</mi>\n </mrow>\n </msup>\n <annotation>$C^{0,\\gamma }$</annotation>\n </semantics></math> in the <i>N</i>-dimensional Euclidean space endowed with a natural anisotropic metric depending on <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math>. We discuss several results including the appropriate Campanato's embedding theorem and we prove that functions of those spaces can be extended to the whole of the Euclidean space without deterioration of the exponents <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <annotation>$\\lambda, p$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider Campanato spaces with exponents on domains of class in the N-dimensional Euclidean space endowed with a natural anisotropic metric depending on . We discuss several results including the appropriate Campanato's embedding theorem and we prove that functions of those spaces can be extended to the whole of the Euclidean space without deterioration of the exponents .