Ibrahim Mohammed , Mohamed E. El Sayed , Ali Shawabkeh , Mohammad N. Murshed , Ibtehaj F. Alshdoukhi , Zeinhom M. El-Bahy , J. Mohammed , A.K. Srivastava
{"title":"Effects of rare-earth Pr3+-Dy3+ doping on structural, magnetic, optical and dielectric properties of Zn2Y hexaferrite","authors":"Ibrahim Mohammed , Mohamed E. El Sayed , Ali Shawabkeh , Mohammad N. Murshed , Ibtehaj F. Alshdoukhi , Zeinhom M. El-Bahy , J. Mohammed , A.K. Srivastava","doi":"10.1016/j.jre.2024.02.014","DOIUrl":null,"url":null,"abstract":"<div><div>This study was conducted to investigate the properties of Pr<sup>3+</sup>-Dy<sup>3+</sup> doped Zn<sub>2</sub>Y-type hexaferrite for potential technological applications. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) were used to analyze structural properties. The crystallite size in the synthesized samples varies between 57.54 and 68.57 nm. The vibrational bands at 400 and 600 cm<sup>−1</sup>, common to all hexaferrites, were confirmed through FTIR. The FESEM analysis reveals an agglomeration of magnetic grains and a decrease in the average grain size from 1.24 to 1.06 μm. The <em>M-H</em> loops show that, with <em>x</em> values of 0.0, 0.1, and 0.2, the saturation magnetization is determined to be 34.76, 34.23, and 32.52 emu/g, respectively. The corresponding coercivity values are 21.24, 30.39, and 33.99 Oe. UV–visible spectroscopy using Tauc theory reveals an increase in the optical band gap from 2.32 to 2.50 eV, indicating a tunable energy band structure by incorporating Pr<sup>3+</sup>-Dy<sup>3+</sup> ions. The dielectric constant increases, whereas AC conductivity decreases with increased Pr<sup>3+</sup>-Dy<sup>3+</sup> concentration. The obtained results suggest the potential suitability of these materials for various technological applications.</div></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"43 2","pages":"Pages 329-336"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072124000590","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study was conducted to investigate the properties of Pr3+-Dy3+ doped Zn2Y-type hexaferrite for potential technological applications. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) were used to analyze structural properties. The crystallite size in the synthesized samples varies between 57.54 and 68.57 nm. The vibrational bands at 400 and 600 cm−1, common to all hexaferrites, were confirmed through FTIR. The FESEM analysis reveals an agglomeration of magnetic grains and a decrease in the average grain size from 1.24 to 1.06 μm. The M-H loops show that, with x values of 0.0, 0.1, and 0.2, the saturation magnetization is determined to be 34.76, 34.23, and 32.52 emu/g, respectively. The corresponding coercivity values are 21.24, 30.39, and 33.99 Oe. UV–visible spectroscopy using Tauc theory reveals an increase in the optical band gap from 2.32 to 2.50 eV, indicating a tunable energy band structure by incorporating Pr3+-Dy3+ ions. The dielectric constant increases, whereas AC conductivity decreases with increased Pr3+-Dy3+ concentration. The obtained results suggest the potential suitability of these materials for various technological applications.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.