{"title":"Identification and recombinant production of a flavonoid glucosyltransferase with broad substrate specificity from Vaccinium corymbosum","authors":"","doi":"10.1007/s13562-024-00876-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Glucosyltransferases (GTs) are enzymes that use UDP-glucose to glucosylate wide variety of substrates, including the aglycones of anthocyanins. Anthocyanins are glycosylated polyphenolic plant pigments possessing potential health benefits to humans. The berries of <em>Vaccinium</em> species plants are rich in anthocyanins. Although the flavonoid content of bilberries is well characterized, the enzymes responsible for carrying out anthocyanin modifications are not thoroughly studied. In this study, a predicted sequence of an anthocyanin glucosyltransferase was identified from the genomic data of <em>Vaccinium corymbosum</em>. The codon-optimized gene sequence of the protein was integrated into the genome of <em>P. pastoris.</em> Constitutive expression in yeast extract-peptone-dextrose based media gave satisfactory amount of recombinant protein. The enzyme activity assays revealed that the <em>V. corymbosum</em> GT transferred glucosyl moieties to up to three positions of diverse flavonoids, such as naringenin, kaempferol, eriodictyol and cyanidin 3-<em>O</em>-glucoside, being therefore a rather unique enzyme among GTs described so far. The enzyme preferred cyanidin 3-<em>O</em>-glucoside, peonidin 3-<em>O</em>-glucoside and eriodictyol as substrates. This enzyme could find application in biotechnological production of glucosylated flavonoids.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00876-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucosyltransferases (GTs) are enzymes that use UDP-glucose to glucosylate wide variety of substrates, including the aglycones of anthocyanins. Anthocyanins are glycosylated polyphenolic plant pigments possessing potential health benefits to humans. The berries of Vaccinium species plants are rich in anthocyanins. Although the flavonoid content of bilberries is well characterized, the enzymes responsible for carrying out anthocyanin modifications are not thoroughly studied. In this study, a predicted sequence of an anthocyanin glucosyltransferase was identified from the genomic data of Vaccinium corymbosum. The codon-optimized gene sequence of the protein was integrated into the genome of P. pastoris. Constitutive expression in yeast extract-peptone-dextrose based media gave satisfactory amount of recombinant protein. The enzyme activity assays revealed that the V. corymbosum GT transferred glucosyl moieties to up to three positions of diverse flavonoids, such as naringenin, kaempferol, eriodictyol and cyanidin 3-O-glucoside, being therefore a rather unique enzyme among GTs described so far. The enzyme preferred cyanidin 3-O-glucoside, peonidin 3-O-glucoside and eriodictyol as substrates. This enzyme could find application in biotechnological production of glucosylated flavonoids.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.