Additively manufactured flexible piezoelectric lead zirconate titanate-nanocellulose films with outstanding mechanical strength, dielectric and piezoelectric properties
IF 8.1 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Additively manufactured flexible piezoelectric lead zirconate titanate-nanocellulose films with outstanding mechanical strength, dielectric and piezoelectric properties","authors":"Muhammad Latif, Yangxiaozhe Jiang, Jaehwan Kim","doi":"10.1016/j.mtadv.2024.100478","DOIUrl":null,"url":null,"abstract":"Nanocellulose (NC)-based piezoelectric films prepared via solution casting show low mechanical, dielectric, and piezoelectric performance due to the randomly oriented cellulose nanofibers and dispersion of piezoelectric domains. Moreover, a high electric field for piezoelectric domain alignment may also increase the brittleness of the piezoelectric films. For the first time, an additive manufacturing (AM) technology is demonstrated to fabricate high mechanical strength and flexible NC-based piezoelectric films efficiently. Different concentrations (10, 20, and 30 wt%) of lead zirconate titanate (PZT) particles are mixed in the NC suspension and additively manufactured, followed by drying at cleanroom conditions. Next, the magnetically induced electric field is introduced into the PZT-NC films coated with silver electrodes. The obtained flexible piezoelectric PZT-NC films show outstanding mechanical strength of 203.5 ± 4.8 MPa, good flexibility, high dielectric constant (87.7 at 1 kHz), low dielectric loss (0.09 at 1 kHz), and high piezoelectric constant (d = 53 pC/N). Furthermore, the 30PZT-NC piezoelectric nanogenerator showed a peak-to-peak voltage of 2.24 V and an output power density of 1.56 μW/cm. The measured mechanical, dielectric, and piezoelectric properties are superior to the previously reported NC-based piezoelectric and commercially available PVDF films. Based on the outstanding multifunctional properties of NC-based piezoelectric films, AM technology can replace traditional solution casting methods and open a wide range of applications in flexible piezoelectric materials.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"19 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100478","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocellulose (NC)-based piezoelectric films prepared via solution casting show low mechanical, dielectric, and piezoelectric performance due to the randomly oriented cellulose nanofibers and dispersion of piezoelectric domains. Moreover, a high electric field for piezoelectric domain alignment may also increase the brittleness of the piezoelectric films. For the first time, an additive manufacturing (AM) technology is demonstrated to fabricate high mechanical strength and flexible NC-based piezoelectric films efficiently. Different concentrations (10, 20, and 30 wt%) of lead zirconate titanate (PZT) particles are mixed in the NC suspension and additively manufactured, followed by drying at cleanroom conditions. Next, the magnetically induced electric field is introduced into the PZT-NC films coated with silver electrodes. The obtained flexible piezoelectric PZT-NC films show outstanding mechanical strength of 203.5 ± 4.8 MPa, good flexibility, high dielectric constant (87.7 at 1 kHz), low dielectric loss (0.09 at 1 kHz), and high piezoelectric constant (d = 53 pC/N). Furthermore, the 30PZT-NC piezoelectric nanogenerator showed a peak-to-peak voltage of 2.24 V and an output power density of 1.56 μW/cm. The measured mechanical, dielectric, and piezoelectric properties are superior to the previously reported NC-based piezoelectric and commercially available PVDF films. Based on the outstanding multifunctional properties of NC-based piezoelectric films, AM technology can replace traditional solution casting methods and open a wide range of applications in flexible piezoelectric materials.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.