Daniel W. Dudt, Alan G. Goodman, Rory Conlin, Dario Panici, Egemen Kolemen
{"title":"Magnetic fields with general omnigenity","authors":"Daniel W. Dudt, Alan G. Goodman, Rory Conlin, Dario Panici, Egemen Kolemen","doi":"10.1017/s0022377824000151","DOIUrl":null,"url":null,"abstract":"Omnigenity is a desirable property of toroidal magnetic fields that ensures confinement of trapped particles. Confining charged particles is a basic requirement for any fusion power plant design, but it can be difficult to satisfy with the non-axisymmetric magnetic fields used by the stellarator approach. Every ideal magnetohydrodynamic equilibrium previously found to approximate omnigenity has been either axisymmetric, quasi-symmetric or has poloidally closed contours of magnetic field strength <jats:inline-formula> <jats:alternatives> <jats:tex-math>$B$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000151_inline1.png\" /> </jats:alternatives> </jats:inline-formula>. However, general omnigenous equilibria are a much larger design space than these subsets. A new model is presented and employed in the DESC stellarator optimization suite to represent and discover the full parameter space of omnigenous equilibria. Although exact omnigenity aside from quasi-symmetry is impossible, these results reveal that excellent particle confinement can be achieved in practice. Examples far from quasi-symmetry with poloidally, helically and toroidally closed <jats:inline-formula> <jats:alternatives> <jats:tex-math>$B$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000151_inline2.png\" /> </jats:alternatives> </jats:inline-formula> contours are attained with DESC and shown to have low neoclassical collisional transport and fast particle losses.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"28 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000151","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Omnigenity is a desirable property of toroidal magnetic fields that ensures confinement of trapped particles. Confining charged particles is a basic requirement for any fusion power plant design, but it can be difficult to satisfy with the non-axisymmetric magnetic fields used by the stellarator approach. Every ideal magnetohydrodynamic equilibrium previously found to approximate omnigenity has been either axisymmetric, quasi-symmetric or has poloidally closed contours of magnetic field strength $B$. However, general omnigenous equilibria are a much larger design space than these subsets. A new model is presented and employed in the DESC stellarator optimization suite to represent and discover the full parameter space of omnigenous equilibria. Although exact omnigenity aside from quasi-symmetry is impossible, these results reveal that excellent particle confinement can be achieved in practice. Examples far from quasi-symmetry with poloidally, helically and toroidally closed $B$ contours are attained with DESC and shown to have low neoclassical collisional transport and fast particle losses.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.