{"title":"Accelerating self-modulated nonlinear waves in weakly and strongly magnetized relativistic plasmas","authors":"Felipe A. Asenjo","doi":"10.1017/s0022377824000229","DOIUrl":null,"url":null,"abstract":"It is known that a nonlinear Schrödinger equation describes the self-modulation of a large amplitude circularly polarized wave in relativistic electron–positron plasmas in the weakly and strongly magnetized limits. Here, we show that such an equation can be written as a modified second Painlevé equation, producing accelerated propagating wave solutions for those nonlinear plasmas. This solution even allows the plasma wave to reverse its direction of propagation. The acceleration parameter depends on the plasma magnetization. This accelerating solution is different to the usual soliton solution propagating at constant speed.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"14 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000229","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that a nonlinear Schrödinger equation describes the self-modulation of a large amplitude circularly polarized wave in relativistic electron–positron plasmas in the weakly and strongly magnetized limits. Here, we show that such an equation can be written as a modified second Painlevé equation, producing accelerated propagating wave solutions for those nonlinear plasmas. This solution even allows the plasma wave to reverse its direction of propagation. The acceleration parameter depends on the plasma magnetization. This accelerating solution is different to the usual soliton solution propagating at constant speed.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.