Xingjie Yan, Kun Yin, Xin-Guang Yang, Alain Miranville
{"title":"Invariant Manifolds for a PDE-ODE Coupled System","authors":"Xingjie Yan, Kun Yin, Xin-Guang Yang, Alain Miranville","doi":"10.1007/s10884-024-10353-y","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to construct invariant manifolds for a coupled system, consisting of a parabolic equation and a second-order ordinary differential equation, set on <span>\\(\\mathbb {T}^3\\)</span> and subject to periodic boundary conditions. Notably, the “spectral gap condition\" does not hold for the system under consideration, leading to the use of the spatial averaging principle, together with the graph transform method. This approach facilitates the construction of the relevant invariant manifold, characterized by attributes such as Lipschitz continuity, local invariance, infinite dimensionality, and exponential tracking, thus mirroring the properties traditionally associated with a classical global manifold.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10353-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to construct invariant manifolds for a coupled system, consisting of a parabolic equation and a second-order ordinary differential equation, set on \(\mathbb {T}^3\) and subject to periodic boundary conditions. Notably, the “spectral gap condition" does not hold for the system under consideration, leading to the use of the spatial averaging principle, together with the graph transform method. This approach facilitates the construction of the relevant invariant manifold, characterized by attributes such as Lipschitz continuity, local invariance, infinite dimensionality, and exponential tracking, thus mirroring the properties traditionally associated with a classical global manifold.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.