Extension of the normal shock wave relations for calorically imperfect gases

IF 1.7 4区 工程技术 Q3 MECHANICS
C. H. B. Civrais, C. White, R. Steijl
{"title":"Extension of the normal shock wave relations for calorically imperfect gases","authors":"C. H. B. Civrais,&nbsp;C. White,&nbsp;R. Steijl","doi":"10.1007/s00193-023-01153-2","DOIUrl":null,"url":null,"abstract":"<div><p>An extension to the normal shock relations for a thermally perfect, calorically imperfect gas, modelling the vibrational excitation with an anharmonic oscillator model and including the influence of electronic modes, is derived and studied. Such additional considerations constitute an extension to the work achieved in the past, which modelled the caloric imperfections with a harmonic oscillator for vibrational energy and did not consider the effect of electronic energy. Additionally, the newly derived expressions provide physical insights into the limitations of experimentation for replicating flight conditions, which is demonstrated through providing solutions at different upstream temperatures. The results are compared with direct simulation Monte Carlo simulations for nitrogen and air, with the extent of the caloric imperfection of the gas showing excellent agreement. For low upstream temperatures, the extended relations are found to be in good agreement with the original normal shock wave expressions, but the results diverge for higher upstream temperatures that would be more representative of real flows. The results show that the new expressions depart from ideal gas theory for Mach numbers in excess of 4.9 at wind-tunnel conditions and for any Mach number above 3.0 at flight conditions. It is also shown that the traditional harmonic oscillator model and the anharmonic oscillator model begin to diverge at Mach number 3.0 for molecular oxygen gas and at Mach number 5.0 for an air mixture at flight conditions.\n</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01153-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-023-01153-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

An extension to the normal shock relations for a thermally perfect, calorically imperfect gas, modelling the vibrational excitation with an anharmonic oscillator model and including the influence of electronic modes, is derived and studied. Such additional considerations constitute an extension to the work achieved in the past, which modelled the caloric imperfections with a harmonic oscillator for vibrational energy and did not consider the effect of electronic energy. Additionally, the newly derived expressions provide physical insights into the limitations of experimentation for replicating flight conditions, which is demonstrated through providing solutions at different upstream temperatures. The results are compared with direct simulation Monte Carlo simulations for nitrogen and air, with the extent of the caloric imperfection of the gas showing excellent agreement. For low upstream temperatures, the extended relations are found to be in good agreement with the original normal shock wave expressions, but the results diverge for higher upstream temperatures that would be more representative of real flows. The results show that the new expressions depart from ideal gas theory for Mach numbers in excess of 4.9 at wind-tunnel conditions and for any Mach number above 3.0 at flight conditions. It is also shown that the traditional harmonic oscillator model and the anharmonic oscillator model begin to diverge at Mach number 3.0 for molecular oxygen gas and at Mach number 5.0 for an air mixture at flight conditions.

热量不完全气体正常冲击波关系的扩展
摘要 对热完全、热不完全气体的法向冲击关系进行了扩展,用非谐振荡器模型对振动激励进行建模,并将电子模态的影响包括在内。这些额外的考虑因素是对过去工作的扩展,过去的工作是用谐波振荡器模拟热量不完全气体的振动能量,而不考虑电子能量的影响。此外,新推导出的表达式提供了对复制飞行条件的实验局限性的物理洞察力,通过提供不同上游温度下的解决方案证明了这一点。结果与氮气和空气的直接模拟蒙特卡罗模拟进行了比较,气体的热量不完善程度显示出极好的一致性。对于低上游温度,扩展关系与原始的正常冲击波表达式非常吻合,但对于更能代表真实流动的较高上游温度,结果则出现了偏差。结果表明,在风洞条件下,当马赫数超过 4.9 时,以及在飞行条件下,当马赫数超过 3.0 时,新的表达式偏离了理想气体理论。研究还表明,对于分子氧气体,传统的谐振子模型和非谐振子模型在马赫数为 3.0 和飞行条件下的空气混合物在马赫数为 5.0 时开始出现分歧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信